Advertisement

NeuroQL: A Domain-Specific Query Language for Neuroscience Data

  • Hao Tian
  • Rajshekhar Sunderraman
  • Robert Calin-Jageman
  • Hong Yang
  • Ying Zhu
  • Paul S. Katz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4254)

Abstract

In this paper, we propose a domain-specific query language called NeuroQL for the neuroscience domain. NeuroQL is designed primarily for neuroinformatics database users and aims to enable users to directly interact with neuroscience databases in their professional concepts and terms with the help of a conceptual data model. NeuroQL is DBMS independent and can be translated into traditional query language such as SQL, OQL and XQuery. It integrates some object-oriented features, and supports neuron domain-specific data types and query operators, which can dynamically evolve when the underlying database schema evolves.

Keywords

Query Language Database Schema Query Operator Chemical Synapse Query Statement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    NeuronBank: Knowledgebase of Identified Neurons & Synaptic Connections, Website: http://www.neuronbank.org
  2. 2.
    The SfN Neuroscience Database Gateway. Website: http://big.sfn.org/NDG/site/
  3. 3.
    Tian, H., Wang, Y., Yang, H., Sunderraman, R., Katz, P.S., Zhu, Y.: A Novel Neuron Data Model with Domain-Specific Query Language. In: 27th Annual International Conference of the IEEE Engineering In Medicine and Biology Society (2005)Google Scholar
  4. 4.
    Deurse, A.V., Klint, P., Visser, J.: Domain-Specific Languages: An Annotated Bibliography. SIGPLAN Notices, ACM 35, 26–36 (2000)CrossRefGoogle Scholar
  5. 5.
    Domain-Specific Languages – An Overview. Website: http://compose.labri.fr/documentation/dsl/dsl_overview.php3
  6. 6.
    Bentley, J.L.: Programming Pearls: Little Languages. Communications of the ACM 29, 711–721 (1986)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Amarall, V., Helmer, S., Meorkottel, G.: A Visual Query Language for HEP Analysis. In: Conference Proceedings of Nuclear Science Symposium. IEEE, Los Alamitos (2003)Google Scholar
  8. 8.
    Collberg, C.S.: A fuzzy visual query language for a domain-specific web search engine. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002. LNCS, vol. 2317, pp. 176–190. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Goodman, N., Rozen, S., Stein, L.: Requeirements for a Deductive Query Language in the Mapbase Genome-Mapping Database. In: Workshop on Programming with Logic Databases, ILPS, pp. 18–32 (1993)Google Scholar
  10. 10.
    Hammer, J., Schneider, M.: The GenAlg Project: Developing a New Integrating Data Model, Language, and Tool for Managing and Querying Genomic Information. SIGMOD Record, ACM 33 (2004)Google Scholar
  11. 11.
    Chen, P.P.: The Entity-Relationship Model: Toward a Unified View of Data. ACM Transactions on Database System 1, 9–36 (1976)CrossRefGoogle Scholar
  12. 12.
    Object Data Management Group. Website: http://www.odmg.org
  13. 13.
    XQuery 1.0. Website: http://www.w3.org/TR/xquery

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hao Tian
    • 1
  • Rajshekhar Sunderraman
    • 1
  • Robert Calin-Jageman
    • 2
  • Hong Yang
    • 1
  • Ying Zhu
    • 1
  • Paul S. Katz
    • 2
  1. 1.Department of Computer ScienceGeorgia State UniversityAtlantaUSA
  2. 2.Department of BiologyGeorgia State UniversityAtlantaUSA

Personalised recommendations