A Foundation for the Replacement of Pipelined Physical Join Operators in Adaptive Query Processing

  • Kwanchai Eurviriyanukul
  • Alvaro A. A. Fernandes
  • Norman W. Paton
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4254)


Adaptive query processors make decisions as to the most effective evaluation strategy for a query based on feedback received while the query is being evaluated. In essence, any of the decisions made by the optimizer (e.g., on operator order or on which operators to use) may be revisited in an adaptive query processor. This paper focuses on changes to physical operators (e.g., the specific join operators used, such as hash-join or merge-join) in pipelined query evaluators. In so doing, the paper characterizes the runtime properties of pipelined operators in a way that makes explicit when specific operators may be replaced, and that allows the validity of operator replacements to be proved. This is illustrated with reference to the substitution of join operators during their evaluation.


Query Processing Hash Table Quiescent State Operator Replacement Execution Plan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Processing. In: ACM SIGMOD, pp. 261–272 (2000)Google Scholar
  2. 2.
    Babu, S., Bizarro, P.: Adaptive Query Processing in the Looking Glass. In: CIDR, pp. 238–249 (2005)Google Scholar
  3. 3.
    Babu, S., Bizarro, P., DeWitt, D.: Proactive Re-Optimization. In: Proc. ACM SIGMOD, pp. 107–118 (2005)Google Scholar
  4. 4.
    Garcia-Molina, H., Widom, J., Ullman, J.D.: Database System Implementation. Prentice-Hall, Inc., Englewood Cliffs (1999)Google Scholar
  5. 5.
    Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A.A.: Adapting to Changing Resources in Grid Query Processing. In: Pierson, J.-M. (ed.) VLDB DMG 2005. LNCS, vol. 3836, pp. 30–44. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Graefe, G.: Encapsulation of Parallelism in the Volcano Query Processing System. In: Proc. SIGMOD, pp. 102–111 (1990)Google Scholar
  7. 7.
    Graefe, G.: Query Evaluation Techniques for Large Databases. ACM Comput. Surv. 25(2), 73–170 (1993)CrossRefGoogle Scholar
  8. 8.
    Ives, Z.G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An Adaptive Query Execution System for Data Integration. In: SIGMOD Conference, pp. 299–310 (1999)Google Scholar
  9. 9.
    Kabra, N., DeWitt, D.J.: Efficient Mid-Query Re-Optimization of Sub-Optimal Query Execution Plans. In: SIGMOD Conference, pp. 106–117 (1998)Google Scholar
  10. 10.
    Markl, V., Raman, V., Simmen, D.E., Lohman, G.M., Pirahesh, H.: Robust Query Processing through Progressive Optimization. In: SIGMOD Conference, pp. 659–670 (2004)Google Scholar
  11. 11.
    Mishra, P., Eich, M.H.: Join Processing in Relational Databases.. ACM Comput. Surv. 24(1), 63–113 (1992)CrossRefGoogle Scholar
  12. 12.
    Ng, K.W., Wang, Z., Muntz, R.R.: Dynamic Reconfiguration of Sub-Optimal Parallel Query Execution Plans. Technical Report CSD-980033, UCLA (1998)Google Scholar
  13. 13.
    Raman, V., Deshpande, A., Hellerstein, J.M.: Using State Modules for Adaptive Query Processing. Technical Report UCB/CSD-03-1231, University of California Berkeley (2003)Google Scholar
  14. 14.
    Shah, M.A., Hellerstein, J.M., Chandrasekaran, S., Franklin, M.J.: Flux: An Adaptive Partitioning Operator for Continuous Query Systems. In: ICDE, pp. 25–36 (2003)Google Scholar
  15. 15.
    Urhan, T., Franklin, M.J., Amsaleg, L.: Cost Based Query Scrambling for Initial Delays. In: SIGMOD Conference, pp. 130–141 (1998)Google Scholar
  16. 16.
    Wilschut, A.N., Apers, P.M.G.: Dataflow Query Execution in a Parallel Main-memory Environment. Distributed and Parallel Databases 1(1), 103–128 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kwanchai Eurviriyanukul
    • 1
  • Alvaro A. A. Fernandes
    • 1
  • Norman W. Paton
    • 1
  1. 1.University of ManchesterManchesterUnited Kingdom

Personalised recommendations