Inferring with Inconsistent OWL DL Ontology: A Multi-valued Logic Approach

  • Yue Ma
  • Zuoquan Lin
  • Zhangang Lin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4254)


Web ontology language OWL DL has two-valued model theory semantics so that ontologies expressed by it become trivial when contradictions occur. Based on classical description logic \(\mathcal{SHOIN(D)}\), we propose the four-valued description logic \(\mathcal{SHOIN(D)}{\it 4}\) which has the ability to reason with inconsistencies. By transformation technic, we convert the reasoning problems of \(\mathcal{SHOIN(D)}{\it 4}\) to the counterparts of \(\mathcal{SHOIN(D)}\). So \(\mathcal{SHOIN(D)}{\it 4}\) provides us with an approach to deal with contradictions by classical reasoning mechanism.


Description Logic Strong Implication Paraconsistent Logic Ontology Language Material Implication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patel-Schneider Peter, F., Ian, H.: OWL Web Ontology Language Semantics and Abstract Syntax. In: W3C Recommendation, February 10 (2004)Google Scholar
  2. 2.
    Franz, B., Ian, H., Sattler, U.: Description logic as ontology languages for the semantic web. In: Proceedings of the Workshop on Methods for Modalities 2001 (2001)Google Scholar
  3. 3.
    Ian, H., Patel-Schneider Peter, F.: Reducing owl entailment to description logic satisfiability. J. Web Sem. 1(4), 345–357 (2004)Google Scholar
  4. 4.
    Benferhat, S., El Baida, R., Cuppens, F.: A stratification-based approach for handling conflicts in access control. In: Symposium on Access Control Models and Technologies (SACMAT 2003), June 2-3 (2003)Google Scholar
  5. 5.
    Zuoquan, L., Wei, L.: Para-consistent logic(I)— the study of traditional para-consistent logic. Computer Science 21(5) (1994)Google Scholar
  6. 6.
    Zuoquan, L., Wei, L.: Para-consistent logic(II)— the study of new para-consistent logic. Computer Science 21(6) (1994)Google Scholar
  7. 7.
    Zuoquan, L., Wei, L.: Para-consistent logic(III)— the logic base of para-consistent logic. Computer Science 22(1) (1995)Google Scholar
  8. 8.
    Belnap, N.D.: A useful four-valued logic. Modern uses of multiple-valued logic, 7–73 (1977)Google Scholar
  9. 9.
    Belnap, N.D.: How a computer should think. In: Comtemporary Aspects of Philosophy: Proceedings of the Oxford International Symposium, pp. 30–56 (1977)Google Scholar
  10. 10.
    Patel-Schneider, P.F.: A four-valued semantics for terminological logics. Artificial Intelligence 38, 319–351 (1989)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 454–459. Professional Book Center (2005)Google Scholar
  12. 12.
    Fitting, M.: Bilattices are nice things. In: Proceedings of Conference on Self-Reference (2002)Google Scholar
  13. 13.
    Arieli, O., Avron, A.: The value of the four values. Artificial Intelligence 102, 97–141 (1998)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Arieli, O., Avron, A.: Reasoning with logical bilattices. J. Logic, Language and Information 5(1), 25–63 (1996)MATHMathSciNetGoogle Scholar
  15. 15.
    Arieli, O., Denecker, M.: Modeling paraconsistent reasoning by classical logic. In: Eiter, T., Schewe, K.-D. (eds.) FoIKS 2002. LNCS, vol. 2284, pp. 1–14. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Arieli, O.: Paraconsistent preferential reasoning by signed quantified boolean formulae. In: de Mántaras, R.L., Saitta, L. (eds.) ECAI, pp. 773–777. IOS Press, Amsterdam (2004)Google Scholar
  17. 17.
    Yue, A., Ma, Y., Zuoquan, L.: Four-valued semantics for default logic. In: Lamontagne, L., Marchand, M. (eds.) Canadian AI 2006. LNCS, vol. 4013, pp. 195–205. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and possibility theory. Artif. Intell. 92(1-2), 259–276 (1997)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yue Ma
    • 1
  • Zuoquan Lin
    • 1
  • Zhangang Lin
    • 1
  1. 1.Department of Information SciencePeking UniversityBeijingChina

Personalised recommendations