Data Integration Targeting a Drug Related Knowledge Base

  • Olivier Curé
  • Raphaël Squelbut
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4254)


We present a patient-oriented computer-based medical system which proposes advices on mild clinical signs treatment and medication. Therefore, this system can be considered a self-medication assistant tool. In a nutshell, this web application validates drug consumptions of a given patient, based on patient information stored in an electronic health care record, with a drug and symptom knowledge base. The efficiency and accuracy of the knowledge base inferences depend on the quality, quantity and recency of the drug instances. A practical source for these information are databases. Thus we developed a data integration solution which enables the mapping of relational databases to a Description Logics knowledge base.


Data Integration Description Logic Conjunctive Query Anatomical Therapeutic Chemical Code Source Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  2. 2.
    Calì, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: On the Expressive Power of Data Integration Systems. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 338–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Curé, O.: Overview of the IMSA project, a patient-oriented information system. Data Science Journal 1(2), 66–75 (2002)Google Scholar
  4. 4.
    Curé, O.: XIMSA: eXtended Interactive Multimedia System for Auto-medication. In: IEEE Computer-Based Medical System Symposium (CBMS) 2004, pp. 570–575 (2004)Google Scholar
  5. 5.
    Curé, O., Squelbut, R.: A database trigger strategy to maintain knowledge bases developed via data migration. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 206–217. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Dean, M., Schreiber, G.: OWL Web Ontology Language Reference. W3C Recommendation (February 10, 2004)Google Scholar
  7. 7.
    Doan, A., Halevy, A.: Semantic integration Research in the database community: a brief survey. AI Magazine, Special Issue on Semantic Integration, 83–94 (Spring 2005) Google Scholar
  8. 8.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Galhardas, H., Florescu, D., Shasha, D., Simon, E., Saita, C.-A.: Declarative Data Cleaning: Language, Models, and Algorithms. In: Very Large Data Bases 2001, pp. 371–380 (2001)Google Scholar
  10. 10.
    Giroud, J.P., Hagege, C.: Le guide Giroud-Hagege de tous les médicaments, Editions du Rocher, Paris, France (2001)Google Scholar
  11. 11.
    Horrocks, I., Sattler, U.: A Tableaux Decision Procedure for SHOIQ. In: Proceedings of IJCAI 2005, pp. 448–453 (2005)Google Scholar
  12. 12.
    Kolaitis, P.: Schema mappings, data exchange, and metadata management. In: ACM Symposium on Principles of Database Systems (PODS) 2005, pp. 61–75 (2005)Google Scholar
  13. 13.
    Lenzerini, M.: Data integration: a theoretical perspective. In: ACM Symposium on Principles of Database Systems (PODS) 2002, pp. 233–246 (2002)Google Scholar
  14. 14.
    WHO Collaborating Centre for Drug Statistics Methodology, URL of Web site:

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Olivier Curé
    • 1
  • Raphaël Squelbut
    • 1
  1. 1.Laboratoire ISISUniversité de Marne-la-ValléeMarne-la-ValléeFrance

Personalised recommendations