An Integrated Platform for Analyzing Molecular-Biological Data Within Clinical Studies

  • Toralf Kirsten
  • Jörg Lange
  • Erhard Rahm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4254)


To investigate molecular-biological causes and effects of diseases and their therapies it becomes increasingly important to combine data from clinical trials with high volumes of experimental genetic data and annotations. We present our approach to integrate such data for two large collaborative cancer research studies in Germany. Our platform interconnects a commercial study management system (eRN) with a data warehouse-based gene expression analysis system (GeWare). We utilize a generic approach to import different anonymized pathological and patient-related annotations into the warehouse. The platform also integrates different forms of experimental data and public molecular-biological annotation data and thus supports a wide range of genetic analyses for both clinical and non-clinical parameters.


Data Warehouse Database Schema Annotation Data Nucleic Acid Research Mutation Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ba04]
    Bairoch, A., et al.: Swiss-Prot: Juggling between evolution and stability. Briefings in Bioinformatics 5, 39–55 (2004)Google Scholar
  2. [Ba05]
    Barrett, T., et al.: NCBI GEO: mining millions of expression profiles - database and tools. Nucleic Acids Research 33 (Database issue), 562–566 (2005)Google Scholar
  3. [Bra01]
    Brazma, A., et al.: Minimum Information about a Microarray Experiment (MIAME) – Towards Standards for Microarray Data. Nature Genetics 19 (2001)Google Scholar
  4. [Bra03]
    Brazma, A., et al.: ArrayExpress: A public database of gene expression data at EBI. C. R. Biologies 326(10-11), 1075–1078Google Scholar
  5. [Bu05]
    Buetov, Kenneth, H.: Cyberinfrastructure: Empowering a Third Way in Biomedical Research. Science 308, 821–824 (2005)Google Scholar
  6. [Ca70]
    Caspersson, et al.: Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma 30, 215–227 (1970)Google Scholar
  7. [Co03]
    Covitz, P.A.: Class struggle: Expression profiling and categorizing cancer. The Pharmacogenomcs Journal 3, 257–260 (2003)Google Scholar
  8. [DR04]
    Do, H.-H., Rahm, E.: Flexible Integration of Molecular-Biological Annotation Data: The GenMapper Approach. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 811–822. Springer, Heidelberg (2004)Google Scholar
  9. [GOC04]
    The Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research 32, D258–D261 (2004)Google Scholar
  10. [Hu06]
    Hummel, M., et al.: Transcriptional and genomic profiling provides a biological definition of Burkitt lymphoma and identifies novel prognostic groups within mature aggressive B-cell lymphoma (submitted)Google Scholar
  11. [Ka92]
    Kallioniemi, A., et al.: Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083), 818–821 (1992)Google Scholar
  12. [Ka05]
    Kallioniemi, O.: Dissection of molecular pathways of cancer by high-throughput biochip technologies and RNA interference. Breast Cancer Research 7, 43 (2005)Google Scholar
  13. [KHR04]
    Kirsten, T., Do, H.-H., Rahm, E.: A Data Warehouse for Gene Expression Analysis. Technical Report. Univ. of Leipzig (2004)Google Scholar
  14. [Ki05]
    Kirsten, T., Do, H.-H., Rahm, E., Körner, C.: Hybrid Integration of molecular bio-logical Annotation Data. In: Ludäscher, B., Raschid, L. (eds.) DILS 2005. LNCS (LNBI), vol. 3615, pp. 208–223. Springer, Heidelberg (2005)Google Scholar
  15. [Ku03]
    Kuchinke, W., Ohmann, C.: eTrials werden zur Routine, Deutsches Ärzteblatt 2003 vol. 100, pp. A 3081–3084 (2003)Google Scholar
  16. [LC03]
    Lacroix, Z., Critchlow, T.: Bioinformatics: Managing Scientific Data. Morgan Kaufmann, San Francisco (2003)Google Scholar
  17. [Lo96]
    Lockhart, D.J., et al.: Expression Monitoring by Hybridization to High-density Oli-gonucleotide Arrays. Nature Biotechnology 14 (1996)Google Scholar
  18. [Ma05]
    Maglott, D., et al.: Entrez Gene: gene-centered information at NCBI. Nucleic Acids Research 33(Database issue), 54–58 (2005)Google Scholar
  19. [Me95]
    Mecucci, C.: FISH (fluorescent in situ hybridization): the second youth of cytogenetics. Haematologica 80(2), 95–97 (1995)Google Scholar
  20. [Na04]
    Nagarajan, R., Ahmed, M., Phatak, A.: Database Challenges in the Integration of Biomedical Data Sets. In: Proc. of the 30th VLDB Conf., Toronto, Canada (2004)Google Scholar
  21. [OMIM00]
    Online Mendelian Inheritance in Man, OMIM. McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD) (2000)Google Scholar
  22. [RB01]
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)Google Scholar
  23. [She95]
    Shena, M., et al.: Quantitative Monitoring of Gene Expression Patterns with a complementary DNA Microarray. Science 270 (1995)Google Scholar
  24. [She01]
    Sherlock, G., et al.: The Stanford Microarray Database. Nucleic Acid Research 29(1) (2001)Google Scholar
  25. [St03]
    Stein, L.: Integrating Biological Databases. Nature Review Genetics 4(5), 337–345 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Toralf Kirsten
    • 1
  • Jörg Lange
    • 1
  • Erhard Rahm
    • 1
    • 2
  1. 1.Interdisciplinary Center for Bioinformatics LeipzigUniversity of Leipzig 
  2. 2.Dept. of Computer ScienceUniversity of Leipzig 

Personalised recommendations