Preference-Driven Querying of Inconsistent Relational Databases

  • Slawomir Staworko
  • Jan Chomicki
  • Jerzy Marcinkowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4254)


One of the goals of cleaning an inconsistent database is to remove conflicts between tuples. Typically, the user specifies how the conflicts should be resolved. Sometimes this specification is incomplete, and the cleaned database may still be inconsistent. At the same time, data cleaning is a rather drastic approach to conflict resolution: It removes tuples from the database, which may lead to information loss and inaccurate query answers.

We investigate an approach which constitutes an alternative to data cleaning. The approach incorporates preference-driven conflict resolution into query answering. The database is not changed. These goals are achieved by augmenting the framework of consistent query answers through various notions of preferred repair. We axiomatize desirable properties of preferred repair families and propose different notions of repair optimality. Finally, we investigate the computational complexity implications of introducing preferences into the computation of consistent query answers.


Logic Program Functional Dependency Integrity Constraint Data Cleaning Query Answer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arenas, M., Bertossi, L., Chomicki, J.: Consistent Query Answers in Inconsistent Databases. In: ACM Symposium on Principles of Database Systems (PODS), pp. 68–79 (1999)Google Scholar
  2. 2.
    Arenas, M., Bertossi, L., Chomicki, J., He, X., Raghavan, V., Spinrad, J.: Scalar Aggregation in Inconsistent Databases. Theoretical Computer Science (TCS) 296(3), 405–434 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bertossi, L.: Consistent Query Answering in Databases. SIGMOD Record (to appear, 2006)Google Scholar
  4. 4.
    Bertossi, L., Chomicki, J.: Query Answering in Inconsistent Databases. In: Chomicki, J., van der Meyden, R., Saake, G. (eds.) Logics for Emerging Applications of Databases, pp. 43–83. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A Cost-Based Model and Effective Heuristic for Repairing Constraints by Value Modification. In: ACM SIGMOD International Conference on Management of Data (2005)Google Scholar
  6. 6.
    Brewka, G.: Preferred Subtheories: An Extended Logical Framework for Default Reasoning. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 1043–1048 (1989)Google Scholar
  7. 7.
    Chomicki, J.: Preference Formulas in Relational Queries. ACM Transactions on Database Systems (TODS) 28(4), 427–466 (2003)CrossRefGoogle Scholar
  8. 8.
    Chomicki, J., Marcinkowski, J.: Minimal-Change Integrity Maintenance Using Tuple Deletions. Information and Computation, 90–121 (2005)Google Scholar
  9. 9.
    Chomicki, J., Marcinkowski, J., Staworko, S.: Computing Consistent Query Answers Using Conflict Hypergraphs. In: International Conference on Information and Knowledge Management (CIKM), pp. 417–426. ACM Press, New York (2004)Google Scholar
  10. 10.
    Chomicki, J., Marcinkowski, J., Staworko, S.: Priority-Based Conflict Resolution in Inconsistent Relational Databases. Technical Report cs.DB/0506063, e-Print archive (June 2004)Google Scholar
  11. 11.
    Fagin, R., Ullman, J.D., Vardi, M.Y.: On the Semantics of Updates in Databases. In: ACM Symposium on Principles of Database Systems (PODS), pp. 352–356 (1983)Google Scholar
  12. 12.
    Flesca, S., Greco, S., Zumpano, E.: Active Integrity Constraints. In: ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming (PPDP), pp. 98–107 (2004)Google Scholar
  13. 13.
    Fuxman, A., Fazli, E., Miller, R.J.: ConQuer: Efficient Management of Inconsistent Databases. In: ACM SIGMOD International Conference on Management of Data (2005)Google Scholar
  14. 14.
    Greco, G., Lembo, D.: Data Integration with Preferences Among Sources. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 231–244. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Greco, S., Sirangelo, C., Trubitsyna, I., Zumpano, E.: Feasibility Conditions and Preference Criteria in Querying and Repairing Inconsistent Databases. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol. 3180, pp. 44–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Grosof, B.N.: Prioritized Conflict Handling for Logic Programs. In: International Logic Programming Symposium, pp. 197–211 (1997)Google Scholar
  17. 17.
    Halpern, J.Y.: Defining Relative Likehood in Partially-Ordered Preferential Structures. Journal of Artificial Intelligence Research (1997)Google Scholar
  18. 18.
    Lomet, D.B.: Letter from the Editor-in-Chief. IEEE Data Eng. Bull. 23(4) (2000)Google Scholar
  19. 19.
    Motro, A., Anokhin, P., Acar, A.C.: Utility-based Resolution of Data Inconsistencies. In: International Workshop on Information Quality in Information Systems (IQIS), pp. 35–43. ACM, New York (2004)CrossRefGoogle Scholar
  20. 20.
    Rahm, E., Do, H.H.: Data Cleaning: Problems and Current Approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)Google Scholar
  21. 21.
    Sakama, C., Inoue, K.: Prioritized logic programming and its application to commonsense reasoning. Artificial Intelligence 123, 185–222 (2000)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Van Nieuwenborgh, D., Vermeir, D.: Preferred Answer Sets for Ordered Logic Programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 432–443. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Vardi, M.Y.: The Complexity of Relational Query Languages. In: ACM Symposium on Theory of Computing (STOC), pp. 137–146 (1982)Google Scholar
  24. 24.
    Vassiliadis, P., Vagena, Z., Skiadopoulos, S., Karayannidis, N.: ARKTOS: A Tool For Data Cleaning and Transformation in Data Warehouse Environments. IEEE Data Eng. Bull. 23(4), 42–47 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Slawomir Staworko
    • 1
  • Jan Chomicki
    • 1
  • Jerzy Marcinkowski
    • 2
  1. 1.University at Buffalo 
  2. 2.Wroclaw University 

Personalised recommendations