Advertisement

The Complexity of Learning SUBSEQ (A)

  • Stephen Fenner
  • William Gasarch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4264)

Abstract

Higman showed that if A is any language then SUBSEQ(A) is regular, where SUBSEQ(A) is the language of all subsequences of strings in A. We consider the following inductive inference problem: given A(ε), A(0), A(1), A(00), ... learn, in the limit, a DFA for SUBSEQ(A). We consider this model of learning and the variants of it that are usually studied in inductive inference: anomalies, mindchanges, and teams.

Keywords

Turing Machine Computable Function Inductive Inference Team Learning Standard Enumeration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baliga, G., Case, J.: Learning with higher order additional information. In: Proc. 5th Int. Workshop on Algorithmic Learning Theory, pp. 64–75. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Blum, L., Blum, M.: Towards a mathematical theory of inductive inference. Information and Computation 28, 125–155 (1975)MATHMathSciNetGoogle Scholar
  3. 3.
    Case, J., Jain, S., Manguelle, S.N.: Refinements of inductive inference by Popperian and reliable machines. Kybernetika 30(1), 23–52 (1994)MATHMathSciNetGoogle Scholar
  4. 4.
    Case, J., Smith, C.H.: Comparison of identification criteria for machine inductive inference. Theoretical Computer Science 25, 193–220 (1983)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Daley, R., Kalyanasundaram, B., Velauthapillai, M.: Breaking the probability 1/2 barrier in FIN-type learning. Journal of Computer and System Sciences 50, 574–599 (1995)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fenner, S., Gasarch, W., Postow, B.: The complexity of finding SUBSEQ(L) (unpublished manuscript, 2006)Google Scholar
  7. 7.
    Fortnow, L., Jain, S., Gasarch, W., Kinber, E., Kummer, M., Kurtz, S., Pleszkoch, M., Slaman, T., Stephan, F., Solovay, R.: Extremes in the degrees of inferability. Annals of Pure and Applied Logic 66, 21–276 (1994)CrossRefGoogle Scholar
  8. 8.
    Freivalds, R., Smith, C.H.: On the role of procrastination for machine learning. Information and Computation 107(2), 237–271 (1993)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Freivalds, R., Smith, C.H., Velauthapillai, M.: Trade-off among parameters affecting inductive inference. Information and Computation 82(3), 323–349 (1989)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gasarch, W., Kinber, E., Pleszkoch, M., Smith, C.H., Zeugmann, T.: Learning via queries, teams, and anomalies. Fundamenta Informaticae 23, 67–89 (1995); Prior version in Computational Learning Theory (COLT) (1990)Google Scholar
  11. 11.
    Gasarch, W., Lee, A.: Inferring answers to queries. In: Proceedings of 10th Annual ACM Conference on Computational Learning Theory, pp. 275–284 (1997); Long version on Gasarch’s home page, in progress, much expandedGoogle Scholar
  12. 12.
    Gasarch, W., Pleszkoch, M., Solovay, R.: Learning via queries to [ + , < ]. Journal of Symbolic Logic 57(1), 53–81 (1992)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gasarch, W., Pleszkoch, M., Stephan, F., Velauthapillai, M.: Classification using information. In: Annals of Math and AI, pp. 147–168 (1998); Earlier version in Proc. 5th Int. Workshop on Algorithmic Learning Theory, pp. 290–300 (1994)Google Scholar
  14. 14.
    Gasarch, W., Smith, C.H.: Learning via queries. Journal of the ACM 39(3), 649–675 (1988); Prior version in IEEE Sym. on Found. of Comp. Sci. (FOCS) (1988)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Gold, E.M.: Language identification in the limit. Information and Computation 10(10), 447–474 (1967)MATHGoogle Scholar
  16. 16.
    Higman, A.G.: Ordering by divisibility in abstract algebra. Proc. of the London Math Society 3, 326–336 (1952)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Kummer, M., Stephan, F.: On the structure of the degrees of inferability. Journal of Computer and System Sciences 52(2), 214–238 (1996); Prior version in Sixth Annual Conference on Computational Learning Theory (COLT), 1993MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967); Reprinted by MIT Press (1987)MATHGoogle Scholar
  19. 19.
    Sacks, G.E.: Higher Recursion Theory. In: Perspectives in Mathematical Logic. Springer, Berlin (1990)Google Scholar
  20. 20.
    Soare, R.: Recursively Enumerable Sets and Degrees. In: Perspectives in Mathematical Logic. Springer, Berlin (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stephen Fenner
    • 1
  • William Gasarch
    • 2
  1. 1.Dept. of Computer Science and EngineeringUniversity of South CarolinaColumbia
  2. 2.Dept. of Computer Science and UMIACSUniversity of Maryland at College ParkCollege ParkUSA

Personalised recommendations