Temporal Properties of Clean Programs Proven in Sparkle-T

  • Máté Tejfel
  • Zoltán Horváth
  • Tamás Kozsik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4164)


In a pure functional language a series of values computed from one another can be considered as different states of the same “abstract object”. For this abstract object temporal properties (e.g. invariants) can be formulated and proved. This paper explains how to define and prove certain kinds of temporal properties of programs written in the pure functional language Clean. Sparkle, a theorem prover designed for Clean, is applied as a tool. Since Sparkle is not capable of handling temporal logical properties, its original version has been extended to support object abstraction, certain temporal properties and a new form of theorems which includes hypotheses. The resulting system is called Sparkle-T. The examples presented in this paper illustrate how object abstraction and the definition and proof of temporal properties can be carried out in Sparkle-T. Furthermore, some novel features of the Sparkle-T system are demonstrated as well.


State Transition Temporal Property Theorem Prover Invariant Property Functional Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Program. Lang. Syst. 15(1), 73–132 (1993)CrossRefGoogle Scholar
  2. 2.
    Achten, P., Plasmeijer, R.: Interactive Objects in Clean. In: Clack, C., Hammond, K., Davie, T. (eds.) IFL 1997. LNCS, vol. 1467, pp. 304–321. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Butterfield, A.: Reasoning about I/O and Exceptions. In: Grelck, C., Huch, F., Michaelson, G.J., Trinder, P. (eds.) IFL 2004. LNCS, vol. 3474, pp. 33–48. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Chandy, K.M., Misra, J.: Parallel Program Design: a Foundation. Addison-Wesley, Reading (1989)Google Scholar
  5. 5.
    Dam, M., Fredlund, L., Gurov, D.: Toward Parametric Verification of Open Distributed Systems. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, p. 150. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall Inc., Englewood Cliffs (1976)zbMATHGoogle Scholar
  7. 7.
    Daxkobler, K., Horváth, Z., Kozsik, T.: A Prototype of CPPCC - Safe Functional Mobile Code in Clean. In: Proceedings of Implementation of Functional Languages 2002, Madrid, Spain, September 15–19, pp. 301–310 (2002)Google Scholar
  8. 8.
    Dowse, M., Strong, G., Butterfield, A.: Proving Make Correct: I/O Proofs in Haskell and Clean. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670, pp. 68–83. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Dowse, M., Butterfield, A., van Eekelen, M., de Mol, M., Plasmeijer, R.: Towards Machine-Verified Proofs for I/O. In: Grelck, C., Huch, F., Michaelson, G.J., Trinder, P. (eds.) IFL 2004. LNCS, vol. 3474. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Dowse, M., Butterfield, A.: A Language for Reasoning about Concurrent Functional I/O (Draft). In: Grelck, C., Huch, F., Michaelson, G.J., Trinder, P. (eds.) IFL 2004. LNCS, vol. 3474, pp. 129–141. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Dowse, M., Butterfield, A., van Eekelen, M.: Reasoning About Deterministic Concurrent Functional I/O. In: Grelck, C., Huch, F., Michaelson, G.J., Trinder, P. (eds.) IFL 2004. LNCS, vol. 3474, pp. 177–194. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Horváth, Z.: The Formal Specification of a Problem Solved by a Parallel Program—a Relational Model. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Computatorica, Tomus XVII, pp. 173–191 (1998)Google Scholar
  14. 14.
    Horváth, Z., Achten, P., Kozsik, T., Plasmeijer, R.: Proving the Temporal Properties of the Unique World. In: Proceedings of the Sixth Symposium on Programming Languages and Software Tools, Tallin, Estonia, pp. 113–125 (August 1999)Google Scholar
  15. 15.
    Horváth, Z., Achten, P., Kozsik, T., Plasmeijer, R.: Verification of the Temporal Properties of Dynamic Clean Processes. In: Koopman, P., Clack, C. (eds.) IFL 1999. LNCS, vol. 1868, pp. 203–218. Springer, Heidelberg (2000)Google Scholar
  16. 16.
    Horváth, Z., Kozsik, T., Tejfel, M.: Proving Invariants of Functional Programs. In: Proceedings of Eighth Symposium on Programming Languages and Software Tools, Kuopio, Finland, June 17–18, pp. 115–126 (2003)Google Scholar
  17. 17.
    Horváth, Z., Kozsik, T., Tejfel, M.: Verifying Invariants of Abstract Functional Objects - a case study. In: 6th International Conference on Applied Informatics, Eger, Hungary, January 7–31 (2004)Google Scholar
  18. 18.
    Kozsik, T., van Arkel, D., Plasmeijer, R.: Subtyping with Strengthening Type Invariants. In: Mohnen, M., Koopman, P. (eds.) IFL 2000. LNCS, vol. 2011, pp. 315–330. Springer, Heidelberg (2001)Google Scholar
  19. 19.
    Kozsik, T.: Reasoning with Sparkle: a case study. Technical Report, Faculty of Informatics, Eötvös Loránd University, Budapest, HungaryGoogle Scholar
  20. 20.
    de Mol, M.: PhD thesis, Radboud University Nijmegen (in preparation)Google Scholar
  21. 21.
    de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem Proving for Functional Programmers. In: Arts, T., Mohnen, M. (eds.) IFL 2002. LNCS, vol. 2312, p. 55. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Peyton Jones, S., Hughes, J., et al.: Report on the Programming Language Haskell 98, A Non-strict, Purely Functional Language (February 1999)Google Scholar
  23. 23.
    Plasmeijer, R., van Eekelen, M.: Concurrent Clean Version 2.0 Language Report (2001),
  24. 24.
    Tejfel, M., Horváth, Z., Kozsik, T.: Extending the Sparkle Core language with object abstraction. Acta Cybernetica 17, 419–445 (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Máté Tejfel
    • 1
  • Zoltán Horváth
    • 1
  • Tamás Kozsik
    • 1
  1. 1.Department of Programming Languages and CompilersEötvös Loránd UniversityBudapestHungary

Personalised recommendations