Advertisement

FPGA Implementation of Point Multiplication on Koblitz Curves Using Kleinian Integers

  • V. S. Dimitrov
  • K. U. Järvinen
  • M. J. JacobsonJr.
  • W. F. Chan
  • Z. Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4249)

Abstract

We describe algorithms for point multiplication on Koblitz curves using multiple-base expansions of the form k = ∑±τ a (τ–1) b and k= ∑±τ a (τ–1) b (τ 2τ– 1) c . We prove that the number of terms in the second type is sublinear in the bit length of k, which leads to the first provably sublinear point multiplication algorithm on Koblitz curves. For the first type, we conjecture that the number of terms is sublinear and provide numerical evidence demonstrating that the number of terms is significantly less than that of τ-adic non-adjacent form expansions. We present details of an innovative FPGA implementation of our algorithm and performance data demonstrating the efficiency of our method.

Keywords

Point Multiplication Greedy Algorithm Elliptic Curve Clock Cycle Elliptic Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 203–209 (1987)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Miller, V.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  3. 3.
    Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    National Institute of Standards and Technology (NIST): Digital signature standard (DSS). Federal Information Processing Standard, FIPS PUB 186-2 (2000)Google Scholar
  5. 5.
    Solinas, J.: Efficient arithmetic on Koblitz curves. Designs, Codes, and Cryptography 19, 195–249 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Avanzi, R., Heuberger, C., Prodinger, H.: Minimality of the Hamming weight of the τ-NAF for Koblitz curves and improved combination with point halving. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 332–344. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Dimitrov, V., Jullien, G., Miller, W.: An algorithm for modular exponentiation. Inform. Process. Lett. 66, 155–159 (1998)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ciet, M., Sica, F.: An analysis of double base number systems and a sublinear scalar multiplication algorithm. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 171–182. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Dimitrov, V., Imbert, L., Mishra, P.: Efficient and secure elliptic curve point multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Avanzi, R., Sica, F.: Scalar multiplication on Koblitz curves using double bases. Technical Report Number 2006/067, Cryptology ePrint Archive (2006)Google Scholar
  11. 11.
    Sica, F.: Personal communication (2006)Google Scholar
  12. 12.
    Conway, J., Smith, D.: On quaternions and octonions. AK Peters (2003)Google Scholar
  13. 13.
    Tijdeman, R.: On integers with many small prime factors. Compos. Math. 26, 319–330 (1973)MATHMathSciNetGoogle Scholar
  14. 14.
    Baker, A.: Linear forms in the logarithms of algebraic numbers IV. Mathematica 15, 204–216 (1968)MATHGoogle Scholar
  15. 15.
    Mignotte, M., Waldshmidt, M.: Linear forms in two logarithms and Schneider’s method III. Annales Fas. Sci. Toulouse, 43–75 (1990)Google Scholar
  16. 16.
    Tijdeman, R.: Personal communication (2006)Google Scholar
  17. 17.
    López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF(2n). In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Doche, C., Lange, T.: Arithmetic of elliptic curves. In: Cohen, H., Frey, G. (eds.) Handbook of Elliptic and Hyperelliptic Curve Cryptography, pp. 267–302. Chapman & Hall/CRC, Boca Raton (2006)Google Scholar
  19. 19.
    Higuchi, A., Takagi, N.: A fast addition algorithm for elliptic curve arithmetic in GF(2n) using projective coordinates. Inform. Process. Lett. 76, 101–103 (2000)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Al-Daoud, E., Mahmod, R., Rushdan, M., Kilicman, A.: A new addition formula for elliptic curves over GF(2n). IEEE Trans. Comput. 51, 972–975 (2002)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases. Inform. Comput. 78, 171–177 (1988)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Wang, C., Troung, T., Shao, H., Deutsch, L., Omura, J., Reed, I.: VLSI architectures for computing multiplications and inverses in GF(2m). IEEE Trans. Comput. 34, 709–717 (1985)MATHCrossRefGoogle Scholar
  23. 23.
    Bednara, M., Daldrup, M.: von zur Gathen, J., Shokrollahi, J., Teich, J.: Reconfigurable implementation of elliptic curve crypto algorithms. In: IPDPS 2002, pp. 157–164 (2002)Google Scholar
  24. 24.
    Leong, P., Leung, K.: A microcoded elliptic curve processor using FPGA technology. IEEE Trans. VLSI Syst. 10, 550–559 (2002)CrossRefGoogle Scholar
  25. 25.
    Eberle, H., Gura, N., Shantz, S., Gupta, V.: A cryptographic processor for arbitrary elliptic curves over GF(2m). Technical Report SMLI TR-2003-123, Sun Microsystems, Inc. (2003)Google Scholar
  26. 26.
    Lutz, J., Hasan, A.: High performance FPGA based elliptic curve cryptographic co-processor. In: Proc. of the Int’l Conf. on Information Technology: Coding and Computing, vol. 2, pp. 486–492 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • V. S. Dimitrov
    • 1
  • K. U. Järvinen
    • 2
  • M. J. JacobsonJr.
    • 3
  • W. F. Chan
    • 3
  • Z. Huang
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of CalgaryCalgary, AlbertaCanada
  2. 2.Signal Processing LaboratoryHelsinki University of TechnologyEspooFinland
  3. 3.Department of Computer ScienceUniversity of CalgaryCalgary, AlbertaCanada

Personalised recommendations