Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Cryptographic Hardware and Embedded Systems

CHES 2006: Cryptographic Hardware and Embedded Systems - CHES 2006 pp 445–459Cite as

  1. Home
  2. Cryptographic Hardware and Embedded Systems - CHES 2006
  3. Conference paper
FPGA Implementation of Point Multiplication on Koblitz Curves Using Kleinian Integers

FPGA Implementation of Point Multiplication on Koblitz Curves Using Kleinian Integers

  • V. S. Dimitrov18,
  • K. U. Järvinen19,
  • M. J. Jacobson Jr.20,
  • W. F. Chan20 &
  • …
  • Z. Huang18 
  • Conference paper
  • 2823 Accesses

  • 20 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4249)

Abstract

We describe algorithms for point multiplication on Koblitz curves using multiple-base expansions of the form k = ∑±τ a (τ–1)b and k= ∑±τ a (τ–1)b (τ 2 – τ– 1)c. We prove that the number of terms in the second type is sublinear in the bit length of k, which leads to the first provably sublinear point multiplication algorithm on Koblitz curves. For the first type, we conjecture that the number of terms is sublinear and provide numerical evidence demonstrating that the number of terms is significantly less than that of τ-adic non-adjacent form expansions. We present details of an innovative FPGA implementation of our algorithm and performance data demonstrating the efficiency of our method.

Keywords

  • Point Multiplication
  • Greedy Algorithm
  • Elliptic Curve
  • Clock Cycle
  • Elliptic Curf

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48, 203–209 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Miller, V.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  3. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

    Google Scholar 

  4. National Institute of Standards and Technology (NIST): Digital signature standard (DSS). Federal Information Processing Standard, FIPS PUB 186-2 (2000)

    Google Scholar 

  5. Solinas, J.: Efficient arithmetic on Koblitz curves. Designs, Codes, and Cryptography 19, 195–249 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Avanzi, R., Heuberger, C., Prodinger, H.: Minimality of the Hamming weight of the τ-NAF for Koblitz curves and improved combination with point halving. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 332–344. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  7. Dimitrov, V., Jullien, G., Miller, W.: An algorithm for modular exponentiation. Inform. Process. Lett. 66, 155–159 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Ciet, M., Sica, F.: An analysis of double base number systems and a sublinear scalar multiplication algorithm. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 171–182. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  9. Dimitrov, V., Imbert, L., Mishra, P.: Efficient and secure elliptic curve point multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  10. Avanzi, R., Sica, F.: Scalar multiplication on Koblitz curves using double bases. Technical Report Number 2006/067, Cryptology ePrint Archive (2006)

    Google Scholar 

  11. Sica, F.: Personal communication (2006)

    Google Scholar 

  12. Conway, J., Smith, D.: On quaternions and octonions. AK Peters (2003)

    Google Scholar 

  13. Tijdeman, R.: On integers with many small prime factors. Compos. Math. 26, 319–330 (1973)

    MATH  MathSciNet  Google Scholar 

  14. Baker, A.: Linear forms in the logarithms of algebraic numbers IV. Mathematica 15, 204–216 (1968)

    MATH  Google Scholar 

  15. Mignotte, M., Waldshmidt, M.: Linear forms in two logarithms and Schneider’s method III. Annales Fas. Sci. Toulouse, 43–75 (1990)

    Google Scholar 

  16. Tijdeman, R.: Personal communication (2006)

    Google Scholar 

  17. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF(2n). In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  18. Doche, C., Lange, T.: Arithmetic of elliptic curves. In: Cohen, H., Frey, G. (eds.) Handbook of Elliptic and Hyperelliptic Curve Cryptography, pp. 267–302. Chapman & Hall/CRC, Boca Raton (2006)

    Google Scholar 

  19. Higuchi, A., Takagi, N.: A fast addition algorithm for elliptic curve arithmetic in GF(2n) using projective coordinates. Inform. Process. Lett. 76, 101–103 (2000)

    CrossRef  MathSciNet  Google Scholar 

  20. Al-Daoud, E., Mahmod, R., Rushdan, M., Kilicman, A.: A new addition formula for elliptic curves over GF(2n). IEEE Trans. Comput. 51, 972–975 (2002)

    CrossRef  MathSciNet  Google Scholar 

  21. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases. Inform. Comput. 78, 171–177 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. Wang, C., Troung, T., Shao, H., Deutsch, L., Omura, J., Reed, I.: VLSI architectures for computing multiplications and inverses in GF(2m). IEEE Trans. Comput. 34, 709–717 (1985)

    CrossRef  MATH  Google Scholar 

  23. Bednara, M., Daldrup, M.: von zur Gathen, J., Shokrollahi, J., Teich, J.: Reconfigurable implementation of elliptic curve crypto algorithms. In: IPDPS 2002, pp. 157–164 (2002)

    Google Scholar 

  24. Leong, P., Leung, K.: A microcoded elliptic curve processor using FPGA technology. IEEE Trans. VLSI Syst. 10, 550–559 (2002)

    CrossRef  Google Scholar 

  25. Eberle, H., Gura, N., Shantz, S., Gupta, V.: A cryptographic processor for arbitrary elliptic curves over GF(2m). Technical Report SMLI TR-2003-123, Sun Microsystems, Inc. (2003)

    Google Scholar 

  26. Lutz, J., Hasan, A.: High performance FPGA based elliptic curve cryptographic co-processor. In: Proc. of the Int’l Conf. on Information Technology: Coding and Computing, vol. 2, pp. 486–492 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Electrical and Computer Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada

    V. S. Dimitrov & Z. Huang

  2. Signal Processing Laboratory, Helsinki University of Technology, Otakaari 5A, 02150, Espoo, Finland

    K. U. Järvinen

  3. Department of Computer Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada

    M. J. Jacobson Jr. & W. F. Chan

Authors
  1. V. S. Dimitrov
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. K. U. Järvinen
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. M. J. Jacobson Jr.
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. W. F. Chan
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Z. Huang
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Versailles Saint-Quentin-en-Yvelines University, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France

    Louis Goubin

  2. Information Technology R&D Center, Mitsubishi Electric Corporation, 5-1-1 Ofuna Kamakura Kanagawa, Japan

    Mitsuru Matsui

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dimitrov, V.S., Järvinen, K.U., Jacobson, M.J., Chan, W.F., Huang, Z. (2006). FPGA Implementation of Point Multiplication on Koblitz Curves Using Kleinian Integers. In: Goubin, L., Matsui, M. (eds) Cryptographic Hardware and Embedded Systems - CHES 2006. CHES 2006. Lecture Notes in Computer Science, vol 4249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894063_35

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11894063_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46559-1

  • Online ISBN: 978-3-540-46561-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature