Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Cryptographic Hardware and Embedded Systems

CHES 2006: Cryptographic Hardware and Embedded Systems - CHES 2006 pp 399–413Cite as

  1. Home
  2. Cryptographic Hardware and Embedded Systems - CHES 2006
  3. Conference paper
Automated Design of Cryptographic Devices Resistant to Multiple Side-Channel Attacks

Automated Design of Cryptographic Devices Resistant to Multiple Side-Channel Attacks

  • Konrad Kulikowski18,
  • Alexander Smirnov18 &
  • Alexander Taubin18 
  • Conference paper
  • 2830 Accesses

  • 11 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4249)

Abstract

Balanced dynamic dual-rail gates and asynchronous circuits have been shown, if implemented correctly, to have natural and efficient resistance to side-channel attacks. Despite their benefits for security applications they have not been adapted to current mainstream designs due to the lack of electronic design automation support and their non-standard or proprietary design methodologies. We present a novel asynchronous fine-grain pipeline synthesis methodology that addresses these limitations. It allows synthesis of asynchronous quasi delay insensitive circuits from standard high-level hardware description language (HDL) specifications. We briefly present a proof of concept differential dynamic power balanced micropipeline library cells that are approximately 6 times more balanced than the best (differential dynamic) cells designed using previous balancing methods. An implementation of the Advanced Encryption Standard based on these balanced cells and synthesized using our tool flow shows a 6.6 times throughput improvement over the synchronous automatically pipelined implementation using the same TSMC 0.18μm technology synthesized from the same HDL specification.

Keywords

  • Advance Encryption Standard
  • Dynamic Logic
  • Register Transfer Level
  • Hardware Description Language
  • Fault Attack

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter PDF

Download to read the full chapter text

References

  1. Fips pub 197: Advanced encryption standard, http://csrc.nist.gov

  2. Tiri, K., Akmal, M., Verbauwhede, I.: A dynamic and differential cmos logic with signal independent power consumption to withstand differential power analysis on smart cards. In: 28th European Solid-State Circuits Conference (ESSCIRC 2002) (2002)

    Google Scholar 

  3. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation. In: Design Automation and Test in Europe Conference (DATE 2004) (2004)

    Google Scholar 

  4. Chinnery, D., Keutzer, K.: Closing the Gap between ASIC & Custom. Tools and Techniques for Gigh-Performance ASIC Design. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  5. Harris, D.: Skew-Tolerant Circuit Design. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  6. Tiri, K., Hwang, W., Hodjat, A., Bo-Cheng, L., Shenglin, Y., Schaumont, P., Verbauwhede, I.: Prototype IC with WDDL and differential routing - DPA sesistance assessment. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 354–365. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  7. McCardle, J., Chester, D.: Measuring an asynchronous processor’s power and noise. In: SNUG (2001)

    Google Scholar 

  8. Kulikowski, K.J., Su, M., Smirnov, A., Taubin, A., Karpovsky, M.G., MacDonald, D.: Delay insensitive encoding and power analysis: A balancing act. In: Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems, pp. 116–125 (2005)

    Google Scholar 

  9. MacDonald, D.J.: A Balanced-Power Domino-Style Standard Cell Library for Fine-Grain Asynchronous Pipelined Design to Resist Differential Power Analysis Attacks. Master of Science Thesis, Boston University (2005)

    Google Scholar 

  10. Li, H., Markettos, A., Moore, S.W.: Security evaluation against electromagnetic analysis at design time. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 280–292. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  11. Taubin, A., Fant, K., McCardle, J.: Design of delay-insensitive three dimension pipeline array multiplier for image processing. In: ICCD (2002)

    Google Scholar 

  12. Sparsø, J., Furber, S. (eds.): Principles of Asynchronous Circuit Design: A Systems Perspective. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  13. Martin, A.J.: Programming in VLSI: From communicating processes to delay-insensitive circuits. In: Hoare, C.A.R. (ed.) Developments in Concurrency and Communication. UT Year of Programming Series, pp. 1–64. Addison-Wesley, Reading (1990)

    Google Scholar 

  14. Bouesse, G.F., Renaudin, M., Dumont, S., Germain, F.: DPA on quasi delay insensitive asynchronous circuits: Formalization and improvement. In: DATE (2005)

    Google Scholar 

  15. David, E., Muller, W., Bartky, S.: A theory of asynchronous circuits. In: Proceedings of an International Symposium on the Theory of Switching, pp. 204–243. Harvard University Press, Cambridge (1959)

    Google Scholar 

  16. Renaudin, M., Vivet, P., Robin, F.: A design framework for asynchronous/ synchronous circuits based on CHP to HDL translation. In: Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems, April 1999, pp. 135–144 (1999)

    Google Scholar 

  17. Wong, C.G., Martin, A.J.: High-level synthesis of asynchronous systems by data-driven decomposition. In: Proc. ACM/IEEE Design Automation Conference, June 2003, pp. 508–513 (2003)

    Google Scholar 

  18. Sutherland, I.E.: Micropipelines. Communications of the ACM 32(6), 720–738 (1989)

    CrossRef  Google Scholar 

  19. Ligthart, M., Fant, K., Smith, R., Taubin, A., Kondratyev, A.: Asynchronous design using commercial HDL synthesis tools. In: Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems, pp. 114–125. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  20. Cortadella, J., Kondratyev, A., Lavagno, L., Sotiriou, C.: De-synchronization: synthesis of asynchronous circuits from synchronous specifications. IEEE Transactions on Computer-Aided Design (to appear)

    Google Scholar 

  21. Smirnov, A., Taubin, A., Karpovsky, M.: An automated fine-grain pipelining using domino style asynchronous library. In: ACSD 2005: Fifth International Conference on Application of Concurrency to System Design, St.Malo, France. IEEE CS Press, Los Alamitos (2005)

    Google Scholar 

  22. Beerel, P.A., Davies, M., Lines, A., Kim, N.-H.: Slack matching asynchronous designs. In: Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems, March 2006, pp. 184–194 (2006)

    Google Scholar 

  23. Prakash, P., Martin, A.J.: Slack matching quasi delay-insensitive circuits. In: Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems, March 2006, pp. 195–204 (2006)

    Google Scholar 

  24. Ozdag, R.O., Beerel, P.A.: High-speed QDI asynchronous pipelines. In: Proc. International Symposium on Advanced Research in Asynchronous Circuits and Systems, April 2002, pp. 13–22 (2002)

    Google Scholar 

  25. Kulikowski, K., Karpovsky, M., Taubin, A.: Power attacks on secure hardware based on early propagation of data. In: 12th IEEE International OnLine Testing Symposium (2006)

    Google Scholar 

  26. Kulikowski, K., Karpovsky, M., Taubin, A.: Robust codes for fault attack resistant cryptographic hardware. In: Fault Diagnosis and Tolerance in Cryptography, 2nd International Workshop, Edinburgh, pp. 1–12 (2005)

    Google Scholar 

  27. Weaver: GTL synthesis flow, http://async.bu.edu/weaver/

  28. TSMC 0.18μm process 1.8-volt Sage-X standard cell library databook (September 2003)

    Google Scholar 

  29. High performance AES cores for ASIC (2005), http://www.heliontech.com

  30. Hodjat, A., Verbauwhede, I.: Area-throughput trade-offs for fully pipelined 30 to 70 Gbits/s AES processors. IEEE Transactions on Computers 55(4) (2006)

    Google Scholar 

  31. Kulikowski, K., Karpovsky, M., Taubin, A.: DPA on faulty cryptographic hardware and countermeasures. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 211–222. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, MA, 02215, USA

    Konrad Kulikowski, Alexander Smirnov & Alexander Taubin

Authors
  1. Konrad Kulikowski
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alexander Smirnov
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alexander Taubin
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Versailles Saint-Quentin-en-Yvelines University, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France

    Louis Goubin

  2. Information Technology R&D Center, Mitsubishi Electric Corporation, 5-1-1 Ofuna Kamakura Kanagawa, Japan

    Mitsuru Matsui

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kulikowski, K., Smirnov, A., Taubin, A. (2006). Automated Design of Cryptographic Devices Resistant to Multiple Side-Channel Attacks. In: Goubin, L., Matsui, M. (eds) Cryptographic Hardware and Embedded Systems - CHES 2006. CHES 2006. Lecture Notes in Computer Science, vol 4249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894063_31

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11894063_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46559-1

  • Online ISBN: 978-3-540-46561-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature