Advertisement

Path Swapping Method to Improve DPA Resistance of Quasi Delay Insensitive Asynchronous Circuits

  • Fraidy Bouesse
  • Gilles Sicard
  • Marc Renaudin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4249)

Abstract

This paper presents a Path Swapping (PS) method which enables to enhance the security of Quasi Delay Insensitive Asynchronous Circuits against Power Analysis (PA) attack. This approach exploits the logical symmetries of the QDI asynchronous blocks, particularly its data-path redundancies, to make all electrical curves used when implementing a PA attacks useless. Indeed, the idea is to average the electrical signatures of a block by randomly exchanging its data-paths during processing. To be able to implement this approach, we adopted a formal model of QDI circuits. Firstly, this formal model enables the designer to formally verify the symmetry of all paths in order to apply a path swapping method. Secondly, it offers the possibility to model the electrical signature of QDI asynchronous circuits. Finally, applying DPA on this formal model allows us to evaluate, in an early phase of the design, the circuit’s sensitivity to the relevancy of the approach. Electrical simulations performed on a DES crypto-processor confirm the efficiency of the technique.

Keywords

QDI Asynchronous circuits Power analysis Path Swapping (PS) 

References

  1. 1.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Moore, S., Anderson, R., Cunningham, P., Mullins, R., Taylor, G.: Improving Smart Card Security using Self-timed Circuits. In:Eighth International Symposium on Asynchronous Circuits and systems (ASYNC 2002), Manchester, U.K, April 8-11 (2002)Google Scholar
  3. 3.
    Plana, L.A., Riocreux, P.A., Bainbridge, W.J., Bardsley, A., Garside, J.D., Temple, S.: SPA - A Synthesisable Amulet Core for Smartcard Applications. In: Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems (ASYNC 2002), Manchester, April 8-11, 2002, pp. 201–210. IEEE Computer Society, Los Alamitos (2002)CrossRefGoogle Scholar
  4. 4.
    Joshua, J., Kocher, P., Benjamin, J.: Balanced Cryptographic computational method and apparatus for leak minimization in smartcards and others Cryptosystems, EP1088295/WO9967766Google Scholar
  5. 5.
    Sokolov, D., Murphy, J., Bystrov, A., Yakovlev, A.: Improving the Security of Dual-Rail Circuits. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 282–297. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Fournier, J.J.A., Moore, S., Li, H., Mullins, R., Taylor, G.: Security Evaluation of Asynchronous Circuits. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 137–151. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Bouesse, F., Renaudin, M., Robisson, B., Beigne, E., Liardet, P.Y., Prevosto, S., Sonzogni, J.: DPA on Quasi Delay Insensitive Asynchronous circuits: Concrete Results. In: DCIS 2004, Bordeaux, France, November 24-26 (2004)Google Scholar
  8. 8.
    Bouesse, G.F., Renaudin, M., Dumont, S., Germain, F.: DPA on Quasi Delay Insensitive Asynchronous Circuits: Formalization and Improvement. In: DATE 2005, Munich, p. 424 (2005)Google Scholar
  9. 9.
    Renaudin, M.: Asynchronous circuits and systems: a promising design alternative. In: Microelectronic for Telecommunications: managing high complexity and mobility (MIGAS 2000), special issue of the Microelectronics-Engineering Journal, December 1-2, 2000, vol. 54, pp. 133–149. Elsevier Science, Amsterdam (2000)Google Scholar
  10. 10.
    Bouesse, F., Renaudin, M., Germain, F.: Asynchronous AES Crypto-processor Including Secured and Optimized Blocks. The Journal of Integrated Circuits and Systems (JICS) 1 (March 2004) ISSN 1807-1953Google Scholar
  11. 11.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of Power Analysis Attacks on Smartcards. In: USENIX Workshop on Smartcard Technology, Chicago, Illinois, USA, May 10-11 (1999)Google Scholar
  12. 12.
    Maurine, P., Rigaud, J.B., Bouesse, F., Sicard, G., Renaudin, M.: Static Implementation of QDI Asynchronous Primitives. In: Chico, J.J., Macii, E. (eds.) PATMOS 2003. LNCS, vol. 2799, pp. 181–191. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    NIST, Data Encryption Standard (DES), FIPS PUB 46-2Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fraidy Bouesse
    • 1
  • Gilles Sicard
    • 1
  • Marc Renaudin
    • 1
  1. 1.TIMA LaboratoryGrenobleFrance

Personalised recommendations