Read-Proof Hardware from Protective Coatings

  • Pim Tuyls
  • Geert-Jan Schrijen
  • Boris Škorić
  • Jan van Geloven
  • Nynke Verhaegh
  • Rob Wolters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4249)


In cryptography it is assumed that adversaries only have black box access to the secret keys of honest parties. In real life, however, the black box approach is not sufficient because attackers have access to many physical means that enable them to derive information on the secret keys. In order to limit the attacker’s ability to read out secret information, the concept of Algorithmic Tamper Proof (ATP) security is needed as put forth by Gennaro, Lysyanskaya, Malkin, Micali and Rabin. An essential component to achieve ATP security is read-proof hardware. In this paper, we develop an implementation of read-proof hardware that is resistant against invasive attacks. The construction is based on a hardware and a cryptographic part. The hardware consists of a protective coating that contains a lot of randomness. By performing measurements on the coating a fingerprint is derived. The cryptographic part consists of a Fuzzy Extractor that turns this fingerprint into a secure key. Hence no key is present in the non-volatile memory of the device. It is only constructed at the time when needed, and deleted afterwards. A practical implementation of the hardware and the cryptographic part is given. Finally, experimental evidence is given that an invasive attack on an IC equipped with this coating, reveals only a small amount of information on the key.


Protective Coating Gray Code Physical Unclonable Function Honest Party Helper Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic Tamper-Proof Security: Theoretical Foundations for Security against Hardware Tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Anderson, R., Kuhn, M.: Low Cost Attacks on Tamper Resistant Devices. In: Christianson, B., Lomas, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 125–136. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Crypto Systems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Škorić, B., Maubach, S., Kevenaar, T., Tuyls, P.: Information-theoretic analysis of coating PUFs. Journal of Applied Physics(accepted for publication),
  6. 6.
    Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.: Generalized Privacy Amplification. IEEE Transactions on Information Theory 41(6), 1915–1923 (1995)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bar-El, H.: Known Attacks Against Smartcards, Discretix Technologies Ltd.,
  8. 8.
    Dodis, Y., Reyzin, M., Smith, A.: Fuzzy Extractors: How to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: 6th ACM Conference on Computer and Communication Security, pp. 28–36 (1999)Google Scholar
  10. 10.
    Linnartz, J.P., Tuyls, P.: New Shielding Functions to Enhance Privacy and Prevent Misuse of Biometric Templates. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 393–402. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Pappu, R.: Physical One-way functions, Ph.D. thesis. MIT (2001)Google Scholar
  12. 12.
    Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical One-way functions. Science 297, 2026–2030 (2002)CrossRefGoogle Scholar
  13. 13.
    Posch, R.: Protecting Devices by Active Coating. Journal of Universal Computer Science 4(7) (1998)Google Scholar
  14. 14.
    Kamendje, G.A., Posch, R.: Intrusion aware CMOS Random Pattern Generator for Cryptographic Applications. In: Rossler, P., Dorderlein, A. (eds.) Proceedings of Austrochip 2001, Vienna, Austria (October 12, 2001) ISBN 3-9501517-0-2Google Scholar
  15. 15.
    Smartec, Universal Transducer Interface evaluation board, Specifications v3.0,
  16. 16.
    Tuyls, P., Batina, L.: RFID tags for Anti-Counterfeiting. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Tuyls, P., Škorić, B.: Secret Key Generation from Classical Physics. In: Mukherjee, et al. (eds.) AmIware, Hardware Technology Drivers of Ambient Intelligence. Philips Research Book Series, pp. 421–447. Kluwer, Dordrecht (2005)Google Scholar
  18. 18.
    Ignatenko, T., Schrijen, G.J., Škorić, B., Tuyls, P., Willems, F.: Estimating the Secrecy-Rate of Physical Uncloneable Functions with the Context-Tree Weighting Method, accepted at ISIT 2006 (2006)Google Scholar
  19. 19.
    Witteman, M.: Smart card security analysis. In: IPA Spring Days on Security, Kapellerput, Heeze, April 18-20 (2001),
  20. 20.
    Witteman, M.: Advances in Smartcard Security. In: Information Security Bulletin, July 2002, pp.11–22 (2002),
  21. 21.
    Yang, J., Gao, L., Zhang, Y.: Improving Memory Encryption Performance in Secure Processors. IEEE. Trans. Computers 53(5), 1–11 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pim Tuyls
    • 1
  • Geert-Jan Schrijen
    • 1
  • Boris Škorić
    • 1
  • Jan van Geloven
    • 1
  • Nynke Verhaegh
    • 1
  • Rob Wolters
    • 1
  1. 1.Philips Research LaboratoriesThe Netherlands

Personalised recommendations