Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Cryptographic Hardware and Embedded Systems

CHES 2006: Cryptographic Hardware and Embedded Systems - CHES 2006 pp 354–368Cite as

  1. Home
  2. Cryptographic Hardware and Embedded Systems - CHES 2006
  3. Conference paper
Unified Point Addition Formulæ and Side-Channel Attacks

Unified Point Addition Formulæ and Side-Channel Attacks

  • Douglas Stebila18 &
  • Nicolas Thériault19 
  • Conference paper
  • 3006 Accesses

  • 19 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4249)

Abstract

The successful application to elliptic curve cryptography of side-channel attacks, in which information about the secret key can be recovered from the observation of side channels like power consumption, timing, or electromagnetic emissions, has motivated the recent development of unified formulæ for elliptic curve point operations. In this paper, we show how an attack introduced by Walter can be improved and used against the unified formulæ of Brier, Déchène and Joye when it relies on a standard field arithmetic implementation, both in affine and projective coordinates. We also describe how the field arithmetic might be implemented to obtain more uniform operations that avoid this type of attack.

Keywords

  • elliptic-curve cryptography
  • side-channel attacks
  • unified point addition formulæ
  • projective coordinates

Chapter PDF

Download to read the full chapter text

References

  1. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Miller, V.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  3. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  4. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Google Scholar 

  5. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  6. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  7. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of Computation 44, 519–521 (1985)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Brier, É., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  9. Walter, C.D.: Simple power analysis of unified code for ECC double and add. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 191–204. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  10. Izu, T., Takagi, T.: On the Security of Brier-Joye’s Addition Formula for Weierstrass-form Elliptic Curves Technical Report, Technische Universität Darmstadt, Available online: http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/

  11. Brier, É., Déchène, I., Joye, M.: Unified point addition formulæ for elliptic curve cryptosystems. In: Nedjah, N., de Macedo Mourelle, L. (eds.) Embedded Cryptographic Hardware: Methodologies and Architectures, pp. 247–256. Nova Science Publishers (2004)

    Google Scholar 

  12. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  13. National Institute of Standards and Technology: Recommended elliptic curves for federal government use (1999), Available online: http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf

  14. OpenSSL Project: OpenSSL v0.9.8, Available online (2005), http://www.openssl.org/

  15. Mozilla Foundation: Netscape Security Services (NSS) v3.9 (2005), Available online: http://www.mozilla.org/projects/security/pki/nss/

  16. Certicom Research: SEC 2: Recommended elliptic curve domain parameters (2000), Available online: http://www.secg.org/

  17. Hankerson, D., Hernandez, J.L., Menezes, A.: Software implementation of elliptic curve cryptography over binary fields. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 1–24. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada

    Douglas Stebila

  2. Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON, Canada

    Nicolas Thériault

Authors
  1. Douglas Stebila
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Nicolas Thériault
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Versailles Saint-Quentin-en-Yvelines University, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France

    Louis Goubin

  2. Information Technology R&D Center, Mitsubishi Electric Corporation, 5-1-1 Ofuna Kamakura Kanagawa, Japan

    Mitsuru Matsui

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stebila, D., Thériault, N. (2006). Unified Point Addition Formulæ and Side-Channel Attacks. In: Goubin, L., Matsui, M. (eds) Cryptographic Hardware and Embedded Systems - CHES 2006. CHES 2006. Lecture Notes in Computer Science, vol 4249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894063_28

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11894063_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46559-1

  • Online ISBN: 978-3-540-46561-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature