Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Cryptographic Hardware and Embedded Systems

CHES 2006: Cryptographic Hardware and Embedded Systems - CHES 2006 pp 285–297Cite as

  1. Home
  2. Cryptographic Hardware and Embedded Systems - CHES 2006
  3. Conference paper
NanoCMOS-Molecular Realization of Rijndael

NanoCMOS-Molecular Realization of Rijndael

  • Massoud Masoumi18,
  • Farshid Raissi18 &
  • Mahmoud Ahmadian18 
  • Conference paper
  • 2798 Accesses

  • 1 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4249)

Abstract

This paper describes the implementation of the Advanced Encryption Standard Algorithm, Rijndael, in a new nanoscale technology, called CMOL. This technology consists of an array of conventional CMOS gates and a wiring network, which consists of a high density mesh of nanowires. The basic Modules of Rijndael were implemented using CMOL architecture. It is observed that the implementation in such a technology has considerable advantages compared to a conventional CMOS approach as regards to defect tolerance, speed, area and power consumption.

Keywords

  • Rijndael
  • VLSI realization
  • CMOL

Chapter PDF

Download to read the full chapter text

References

  1. Daemen, J., Rijmen, V.: AES Proposal Rijndael, National Institute of Standards and Technology (July 2001)

    Google Scholar 

  2. Fischer, V., Drutarovsky, M.: Two Methods of Rijndael Implementation in Reconfigurable Hardware. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 77–92. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  3. Sklavos, N., Koufopavlou, O.: Architectures and VLSI Implementation of the AES-Proposal Rijndael. IEEE Trans. Computers 51(12), 1454–1459 (2002)

    CrossRef  MathSciNet  Google Scholar 

  4. Lu, C. C., Tseng Y. S.: Integrated Design of AES (Advanced Encryption Standard) Encryptor and Decryptor. In: Proc. IEEE Int. Conf. Application Specific Systems, Architectures Processors, pp. 277–285 (2002)

    Google Scholar 

  5. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware Architecture S-BOX Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  6. Zhang, X., Parhi, K.K.: Implementation Approaches for the Advanced Encryption Standard Algorithm. IEEE Circuits Mag. 2(4), 24–46 (2002)

    CrossRef  Google Scholar 

  7. Zhang, X., Parhi, K.K.: High-Speed VLSI Architectures for the AES Algorithm. IEEE Trans. Very Large Scale Integration (VLSI) Systems 12(9), 957–967 (2004)

    CrossRef  Google Scholar 

  8. Fortes, J.: Future challenges in VLSI System Design. In: Proceedings IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2003), pp. 5–7 (2003)

    Google Scholar 

  9. Likharev, K.K., Strukov, D.B.: Electronics Below 10 nm, Nano and Giga Challenges in Microelectronics, pp. 27–68. Elsevier, Amsterdam (2003)

    CrossRef  Google Scholar 

  10. International Technology Roadmap for Semiconductors (ITRS), Update (2004), Available online at: http://public.itrs.net/

  11. Ziegler, M.M., Stan, M.R.: CMOS/nano Co-Design for Crossbar-Based Molecular Electronic Systems. IEEE Trans. Nanotechnology 2(4), 217–230 (2003)

    CrossRef  Google Scholar 

  12. Likharev, K.K., Strukov, D.: B.: CMOL: Devices, Circuits, and Architectures, Available online at: http://www-mcg.uniregensburg.de/pages/admol/book/chapter/16.html/book/chapter/_16.html

  13. Strukov, D.B., Likharev, K.K.: CMOL FPGA: a Reconfigurable Architecture for Hybrid Digital Circuits with Two-Terminal Nanodevices. Nanotechnology 16, 888–900 (2005)

    CrossRef  Google Scholar 

  14. Likharev, K.K., Türel, Ö., Lee, J.H., Ma, X.: Architectures for Nanoelectronic Implementation of Artificial Neural Networks: New Results. Neurocomputing 64(1), 271–283 (2005)

    Google Scholar 

  15. Strukov, D., Likharev, K.: Prospects for Terabit-Scale Nanoelectronic Memories. Nanotechnology 16, 137–138 (2005)

    CrossRef  Google Scholar 

  16. Masoumi, M., Raissi, F., Ahmadian, M., Keshavarzi, P.: Design and Evaluation of Basic Standard Encryption Algorithm Modules using Nanosized CMOS-Molecular Circuits. Nanotechnology 17, 89–99 (2006)

    CrossRef  Google Scholar 

  17. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  18. Strukov, D.,, B.: Likharev, K, K.: A Reconfigurable Architecture for Hybrid CMOS/Nanodevice Circuits, Available online at: http://portal.acm.org/affiliated/citation.cfm?id=1117221&coll=ACM&dl=guide

  19. Standaert, F.X.: Secure, Efficient Use of Reconfigurable Hardware Devices in Symmetric Cryptography, Ph. D. Thesis, University of Catholique de Louvain, Belgium (2004)

    Google Scholar 

  20. Rijmen, V.: Efficient Implementation of Rijndael S-Box, Available online at: www.iaik.tugraz.at/research/krypto/AES/old~rijmen/rijndael/sbox.pdf

  21. Morioka, S., Satoh, A.: An Optimized S-Box Circuit Architecture for Low Power AES Design. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. ECE Dept., K. N. Toosi University of Technology, Tehran, Iran

    Massoud Masoumi, Farshid Raissi & Mahmoud Ahmadian

Authors
  1. Massoud Masoumi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Farshid Raissi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Mahmoud Ahmadian
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Versailles Saint-Quentin-en-Yvelines University, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France

    Louis Goubin

  2. Information Technology R&D Center, Mitsubishi Electric Corporation, 5-1-1 Ofuna Kamakura Kanagawa, Japan

    Mitsuru Matsui

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masoumi, M., Raissi, F., Ahmadian, M. (2006). NanoCMOS-Molecular Realization of Rijndael. In: Goubin, L., Matsui, M. (eds) Cryptographic Hardware and Embedded Systems - CHES 2006. CHES 2006. Lecture Notes in Computer Science, vol 4249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894063_23

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11894063_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46559-1

  • Online ISBN: 978-3-540-46561-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature