NanoCMOS-Molecular Realization of Rijndael

  • Massoud Masoumi
  • Farshid Raissi
  • Mahmoud Ahmadian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4249)

Abstract

This paper describes the implementation of the Advanced Encryption Standard Algorithm, Rijndael, in a new nanoscale technology, called CMOL. This technology consists of an array of conventional CMOS gates and a wiring network, which consists of a high density mesh of nanowires. The basic Modules of Rijndael were implemented using CMOL architecture. It is observed that the implementation in such a technology has considerable advantages compared to a conventional CMOS approach as regards to defect tolerance, speed, area and power consumption.

Keywords

Rijndael VLSI realization CMOL 

References

  1. 1.
    Daemen, J., Rijmen, V.: AES Proposal Rijndael, National Institute of Standards and Technology (July 2001)Google Scholar
  2. 2.
    Fischer, V., Drutarovsky, M.: Two Methods of Rijndael Implementation in Reconfigurable Hardware. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 77–92. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Sklavos, N., Koufopavlou, O.: Architectures and VLSI Implementation of the AES-Proposal Rijndael. IEEE Trans. Computers 51(12), 1454–1459 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Lu, C. C., Tseng Y. S.: Integrated Design of AES (Advanced Encryption Standard) Encryptor and Decryptor. In: Proc. IEEE Int. Conf. Application Specific Systems, Architectures Processors, pp. 277–285 (2002)Google Scholar
  5. 5.
    Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware Architecture S-BOX Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Zhang, X., Parhi, K.K.: Implementation Approaches for the Advanced Encryption Standard Algorithm. IEEE Circuits Mag. 2(4), 24–46 (2002)CrossRefGoogle Scholar
  7. 7.
    Zhang, X., Parhi, K.K.: High-Speed VLSI Architectures for the AES Algorithm. IEEE Trans. Very Large Scale Integration (VLSI) Systems 12(9), 957–967 (2004)CrossRefGoogle Scholar
  8. 8.
    Fortes, J.: Future challenges in VLSI System Design. In: Proceedings IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2003), pp. 5–7 (2003)Google Scholar
  9. 9.
    Likharev, K.K., Strukov, D.B.: Electronics Below 10 nm, Nano and Giga Challenges in Microelectronics, pp. 27–68. Elsevier, Amsterdam (2003)CrossRefGoogle Scholar
  10. 10.
    International Technology Roadmap for Semiconductors (ITRS), Update (2004), Available online at: http://public.itrs.net/
  11. 11.
    Ziegler, M.M., Stan, M.R.: CMOS/nano Co-Design for Crossbar-Based Molecular Electronic Systems. IEEE Trans. Nanotechnology 2(4), 217–230 (2003)CrossRefGoogle Scholar
  12. 12.
    Likharev, K.K., Strukov, D.: B.: CMOL: Devices, Circuits, and Architectures, Available online at: http://www-mcg.uniregensburg.de/pages/admol/book/chapter/16.html/book/chapter/_16.html
  13. 13.
    Strukov, D.B., Likharev, K.K.: CMOL FPGA: a Reconfigurable Architecture for Hybrid Digital Circuits with Two-Terminal Nanodevices. Nanotechnology 16, 888–900 (2005)CrossRefGoogle Scholar
  14. 14.
    Likharev, K.K., Türel, Ö., Lee, J.H., Ma, X.: Architectures for Nanoelectronic Implementation of Artificial Neural Networks: New Results. Neurocomputing 64(1), 271–283 (2005)Google Scholar
  15. 15.
    Strukov, D., Likharev, K.: Prospects for Terabit-Scale Nanoelectronic Memories. Nanotechnology 16, 137–138 (2005)CrossRefGoogle Scholar
  16. 16.
    Masoumi, M., Raissi, F., Ahmadian, M., Keshavarzi, P.: Design and Evaluation of Basic Standard Encryption Algorithm Modules using Nanosized CMOS-Molecular Circuits. Nanotechnology 17, 89–99 (2006)CrossRefGoogle Scholar
  17. 17.
    Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)MATHGoogle Scholar
  18. 18.
    Strukov, D.,, B.: Likharev, K, K.: A Reconfigurable Architecture for Hybrid CMOS/Nanodevice Circuits, Available online at: http://portal.acm.org/affiliated/citation.cfm?id=1117221&coll=ACM&dl=guide
  19. 19.
    Standaert, F.X.: Secure, Efficient Use of Reconfigurable Hardware Devices in Symmetric Cryptography, Ph. D. Thesis, University of Catholique de Louvain, Belgium (2004)Google Scholar
  20. 20.
    Rijmen, V.: Efficient Implementation of Rijndael S-Box, Available online at: www.iaik.tugraz.at/research/krypto/AES/old~rijmen/rijndael/sbox.pdf
  21. 21.
    Morioka, S., Satoh, A.: An Optimized S-Box Circuit Architecture for Low Power AES Design. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Massoud Masoumi
    • 1
  • Farshid Raissi
    • 1
  • Mahmoud Ahmadian
    • 1
  1. 1.ECE Dept.K. N. Toosi University of TechnologyTehranIran

Personalised recommendations