Security Evaluation of DPA Countermeasures Using Dual-Rail Pre-charge Logic Style

  • Daisuke Suzuki
  • Minoru Saeki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4249)


In recent years, some countermeasures against Differential Power Analysis (DPA) at the logic level have been proposed. At CHES 2005 conference, Popp and Mangard proposed a new countermeasure named Masked Dual-Rail Pre-Charge Logic (MDPL) which combine dual-rail circuits with random masking to improve Wave Dynamic Differential Logic (WDDL). The proposers of MDPL claim that it can implement secure circuits using a standard CMOS cell library without special constraints for the place-and-route because the difference of loading capacitance between all pairs of complementary logic gates in MDPL can be covered up by the random masking. In this paper, we especially focus the signal transition of the MDPL gate and evaluate the DPA-resistance of MDPL in detail. Our evaluation results show that the leakage occurs in the MDPL gates as well as WDDL gates when input signals have difference of delay time even if MDPL has an effectiveness on reducing the leakage caused by the difference of loading capacitance. Furthermore, we demonstrate the problem with different input signal delays by measurements of an FPGA and show the validity of our evaluation.


Power Consumption Input Signal Delay Condition Logic Level Security Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Trichina, E.: Combinational Logic Design for AES SubByte Transformation on Masked Data, Cryptology ePrint Archive, 2003/236 (2003)Google Scholar
  3. 3.
    Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Mased AES Hardware Implementation. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Suzuki, D., Saeki, M., Ichikawa, T.: Random Switching Logic: A Countermeasure against DPA based on Transition Probability, Cryptology ePrint Archive, Report 2004/346 (2004)Google Scholar
  6. 6.
    Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation. In: Proc. of Design Automation and Test in Europe Conference, pp. 246–251 (2004)Google Scholar
  7. 7.
    Tiri, K., Verbauwhede, I.: Place and Route for Secure Stabdard Cell Design. In: CARDIS 2004, pp. 143–158 (2004)Google Scholar
  8. 8.
    Suzuki, D., Saeki, M., Ichikawa, T.: DPA Leakage Models for CMOS Logic Circuits. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 366–382. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Popp, T., Mangard, S.: Masked Dual-Rail Pre-charge Logic: DPA-Resistance Without Routing Constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 172–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low Power Digital CMOS Design. IEEE Journal of Solid State Circuits 27(4), 473–484 (1992)CrossRefGoogle Scholar
  11. 11.
    Guilley, S., Hoogvorst, P., Mathieu, Y., Pacalet, R.: The Backend Duplication Method. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 383–397. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Morioka, S., Satoh, A.: An Optimized S-box Circuit Architecture for Low Power AES Design. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Xilinx, Inc., Data sheet VirtexTM 2.5 V Field Programmable Gate Arrays,
  14. 14.
    Xilinx, Inc., Software Manuals Constraints Guide,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daisuke Suzuki
    • 1
  • Minoru Saeki
    • 1
  1. 1.Information Technology R&D CenterMitsubishi Electric CorporationKanagawaJapan

Personalised recommendations