Advertisement

Dual-Rail Random Switching Logic: A Countermeasure to Reduce Side Channel Leakage

  • Zhimin Chen
  • Yujie Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4249)

Abstract

Recent research has shown that cryptographers with glitches are vulnerable in front of Side Channel Attacks (SCA). Since then, several methods, such as Wave Dynamic Differential Logic (WDDL) and Masked Dual-Rail Pre-charge Logic (MDPL), have been presented to make circuits clean. In this paper, we propose a more accurate power model based on logic gates’ output transitions and divide it into pieces according to input signals’ transformations. Based on our model, we demonstrate that 1-bit masked logic gates with asynchronous inputs always leak side-channel information from their output transitions. Therefore, even those gates designed without glitches are still susceptible to be attacked. To solve this problem, Dual-Rail Random Switching Logic (DRSL) is presented. By introducing a local pre-charge signal, DRSL gates have their inputs synchronized. Experimental results indicate that DRSL eliminates most of the leakage.

Keywords

Side Channel Attacks DPA Gate Level Masking DRSL Dual-Rail Pre-charge 

References

  1. 1.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis - The “Duplication” Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Popp, T., Mangard, S.: Masked Dual-Rail Pre-charge Logic: DPA-Resistance Without Routing Constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 172–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Tiri, K., Verbauwhede, I.: Securing Encryption Algorithms against DPA at the Logic Level Next Generation Smart Card Technology. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation. In: Design, Automation and Test in Europe Conference and Exposition (DATE 2004), pp. 246–251. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  9. 9.
    Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    E. Trichina: Combinational Logic Design for AES SubByte Transformation on Masked Data. Cryptology ePrint Archive, Report 2003/236 (2003), http://eprint.iacr.org/
  11. 11.
    Trichina, E., Korkishko, T.: Small Size, Low Power, Side Channel-Immune AES Comprocessor: Design and Synthesis Results. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 113–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Trichina, E., Korkishko, T.: Secure AES Hardware Module for Resource Constrained Devices. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS 2004. LNCS, vol. 3313, pp. 215–229. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Trichina, E., Korkishko, L.: Secure and Efficient AES Software Implementation for Smart Cards. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 425–439. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Chandrakasan, A.P., Shen, S., Brodersen, R.W.: Low Power Digital CMOS Design. IEEE Journal of Solid State Circuits 27(4), 473–484 (1992)CrossRefGoogle Scholar
  15. 15.
    Suzuki, D., Saeki, M., Ichikawa, T.: Random Switching Logic: A Countermeasure against DPA based on Transition Probability. Cryptology ePrint Archive, Report 2004/346 (2004), http://eprint.iacr.org/
  16. 16.
    Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Blomer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis Resistant Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zhimin Chen
    • 1
  • Yujie Zhou
    • 1
  1. 1.Shanghai Jiao Tong UniversityChina

Personalised recommendations