Templates vs. Stochastic Methods

A Performance Analysis for Side Channel Cryptanalysis
  • Benedikt Gierlichs
  • Kerstin Lemke-Rust
  • Christof Paar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4249)


Template Attacks and the Stochastic Model provide advanced methods for side channel cryptanalysis that make use of ‘a-priori’ knowledge gained from a profiling step. For a systematic comparison of Template Attacks and the Stochastic Model, we use two sets of measurement data that originate from two different microcontrollers and setups. Our main contribution is to capture performance aspects against crucial parameters such as the number of measurements available during profiling and classification. Moreover, optimization techniques are evaluated for both methods under consideration. Especially for a low number of measurements and noisy samples, the use of a T-Test based algorithm for the choice of relevant instants can lead to significant performance gains. As a main result, T-Test based Templates are the method of choice if a high number of samples is available for profiling. However, in case of a low number of samples for profiling, stochastic methods are an alternative and can reach superior efficiency both in terms of profiling and classification.


Template Attack Stochastic Model Performance Analysis Side Channel Cryptanalysis High-Order Attacks Power Analysis 


  1. 1.
    Agrawal, D., Rao, J.R., Rohatgi, P.: Multi-channel Attacks. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 2–16. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Fahn, P.N., Pearson, P.K.: IPA: A New Class of Power Attacks. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 173–186. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Channel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C — The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)MATHGoogle Scholar
  9. 9.
    Rechberger, C.: Side Channel Analysis of Stream Ciphers, Master Thesis, Technical University Graz (2004)Google Scholar
  10. 10.
    Trochim, W.M.: The Research Methods Knowledge Base, 2nd edn. (January 16, 2005),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Benedikt Gierlichs
    • 1
    • 2
  • Kerstin Lemke-Rust
    • 2
  • Christof Paar
    • 2
  1. 1.K.U. LeuvenESAT/COSICLeuven-HeverleeBelgium
  2. 2.Horst Görtz Institute for IT SecurityRuhr University BochumBochumGermany

Personalised recommendations