Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Cryptographic Hardware and Embedded Systems

CHES 2006: Cryptographic Hardware and Embedded Systems - CHES 2006 pp 160–173Cite as

  1. Home
  2. Cryptographic Hardware and Embedded Systems - CHES 2006
  3. Conference paper
Fast Generation of Prime Numbers on Portable Devices: An Update

Fast Generation of Prime Numbers on Portable Devices: An Update

  • Marc Joye18 &
  • Pascal Paillier19 
  • Conference paper
  • 4093 Accesses

  • 19 Citations

  • 5 Altmetric

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4249)

Abstract

The generation of prime numbers underlies the use of most public-key cryptosystems, essentially as a primitive needed for the creation of RSA key pairs. Surprisingly enough, despite decades of intense mathematical studies on primality testing and an observed progressive intensification of cryptography, prime number generation algorithms remain scarcely investigated and most real-life implementations are of dramatically poor performance.

We show simple techniques that substantially improve all algorithms previously suggested or extend their capabilities. We derive fast implementations on appropriately equipped portable devices like smart-cards embedding a cryptographic coprocessor. This allows onboard generation of RSA keys featuring a very attractive (average) processing time.

Our motivation here is to help transferring this task from terminals where this operation usually took place so far, to portable devices themselves in near future for more confidence, security, and compliance with network-scaled distributed protocols such as electronic cash or mobile commerce.

Keywords

  • Public-key cryptography
  • RSA
  • primality testing
  • prime number generation
  • embedded software
  • efficient implementations
  • cryptoprocessors
  • smart cards
  • PDAs

Chapter PDF

Download to read the full chapter text

References

  1. ANSI X9.31. Public-key cryptography using RSA for the financial services industry. American National Standard for Financial Services, draft (1995)

    Google Scholar 

  2. Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Mathematics of Computation 61, 29–68 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg (1997)

    Google Scholar 

  4. Bosma, W., van der Hulst, M.-P.: Faster primality testing. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 652–656. Springer, Heidelberg (1990)

    Google Scholar 

  5. Brandt, J., Damgård, I.: On generation of probable primes by incremental search. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 358–370. Springer, Heidelberg (1993)

    Google Scholar 

  6. Brandt, J., Damgård, I., Landrock, P.: Speeding up prime number generation. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 440–449. Springer, Heidelberg (1993)

    Google Scholar 

  7. Carmichael, R.D.: Introduction to the Theory of Groups of Finite Order. Dover, Mineola (1956)

    MATH  Google Scholar 

  8. Couvreur, C., Quisquater, J.-J.: An introduction to fast generation of large prime numbers. Philips Journal of Research 37, 231–264 (1982)

    MathSciNet  Google Scholar 

  9. Ding, C., Pei, D., Salomaa, A.: Chinese Remainder Theorem. Word Scientific, Singapore (1996)

    CrossRef  MATH  Google Scholar 

  10. Gallagher, P.X.: On the distribution of primes in short intervals. Mathematica 23, 4–9 (1976)

    MATH  MathSciNet  Google Scholar 

  11. Hardy, G.H., Littlewood, J.E.: Some problems of ‘Partitio Numerorum’ III: On the expression of a number as a sum of primes. Acta Mathematica 44, 1–70 (1922)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Joye, M., Paillier, P.: Fast generation of prime numbers on portable devices: An update. Extended version of this work, Available on: http://eprint.iacr.org

  13. Joye, M., Paillier, P., Vaudenay, S.: Efficient generation of prime numbers. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 340–354. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  14. Knuth, D.E.: The Art of Computer Programming - Seminumerical Algorithms, 2nd edn., vol. 2. Addison-Wesley, Reading (1981)

    Google Scholar 

  15. Lu, C., Dos Santos, A.L.M.: A note on efficient implementation of prime generation in small portable devices. Computer Networks 49, 476–491 (2005)

    CrossRef  Google Scholar 

  16. Lu, C., Dos Santos, A.L.M., Pimentel, F.R.: Implementation of fast RSA key generation on smart cards. In: 17th ACM Symposium on Applied Computing, pp. 214–221. ACM Press, New York (2002)

    Google Scholar 

  17. Maurer, U.: Fast generation of prime numbers and secure public-key cryptographic parameters. Journal of Cryptology 8, 123–155 (1995)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  19. Monier, L.: Evaluation and comparison of two efficient probabilistic primality testing algorithms. Theoretical Computer Science 12, 97–108 (1980)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Pocklington, C.: The determination of the prime or composite nature of large numbers by Fermat’s theorem. In: Proc. of the Cambridge Philosophical Society, vol. 18, pp. 29–30 (1914)

    Google Scholar 

  21. Quisquater, J.-J., Couvreur, C.: Fast decipherment algorithm for RSA public-key cryptosystem. Electronics Letters 18, 905–907 (1982)

    CrossRef  Google Scholar 

  22. Riesel, H.: Prime Numbers and Computer Methods for Factorization, Birkhäuser (1985)

    Google Scholar 

  23. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

    CrossRef  MATH  MathSciNet  Google Scholar 

  24. Silverman, R.D.: Fast generation of random, strong RSA primes. Cryptobytes 3, 9–13 (1997)

    Google Scholar 

  25. Solovay, R., Strassen, V.: A fast Monte-Carlo test for primality. SIAM Journal on Computing 6, 84–85 (1977)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Technology Group, Corporate Research, Security Laboratory, Thomson R&D France, 1 avenue Belle Fontaine, 35576, Cesson-Sévigné, France

    Marc Joye

  2. Gemalto, Security Labs, 34 rue Guynemer, 92447 Cedex, Issy-les-Moulineaux, France

    Pascal Paillier

Authors
  1. Marc Joye
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Pascal Paillier
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Versailles Saint-Quentin-en-Yvelines University, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France

    Louis Goubin

  2. Information Technology R&D Center, Mitsubishi Electric Corporation, 5-1-1 Ofuna Kamakura Kanagawa, Japan

    Mitsuru Matsui

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joye, M., Paillier, P. (2006). Fast Generation of Prime Numbers on Portable Devices: An Update. In: Goubin, L., Matsui, M. (eds) Cryptographic Hardware and Embedded Systems - CHES 2006. CHES 2006. Lecture Notes in Computer Science, vol 4249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894063_13

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11894063_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46559-1

  • Online ISBN: 978-3-540-46561-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature