Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Cryptographic Hardware and Embedded Systems

CHES 2006: Cryptographic Hardware and Embedded Systems - CHES 2006 pp 148–159Cite as

  1. Home
  2. Cryptographic Hardware and Embedded Systems - CHES 2006
  3. Conference paper
SPA-Resistant Scalar Multiplication on Hyperelliptic Curve Cryptosystems Combining Divisor Decomposition Technique and Joint Regular Form

SPA-Resistant Scalar Multiplication on Hyperelliptic Curve Cryptosystems Combining Divisor Decomposition Technique and Joint Regular Form

  • Toru Akishita18,
  • Masanobu Katagi18 &
  • Izuru Kitamura18 
  • Conference paper
  • 2807 Accesses

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4249)

Abstract

Hyperelliptic Curve Cryptosystems (HECC) are competitive to elliptic curve cryptosystems in performance and security. Recently efficient scalar multiplication techniques using a theta divisor have been proposed. Their application, however, is limited to the case when a theta divisor is used for the base point. In this paper we propose efficient and secure scalar multiplication of a general divisor for genus 2 HECC over \(\mathbb{F}_{2^m}\). The proposed method is based on two novel techniques. One is divisor decomposition technique in which a general divisor is decomposed into two theta divisors. The other is joint regular form for a pair of integers that enables efficient and secure simultaneous scalar multiplication of two theta divisors. The marriage of the above two techniques achieves both about 19% improvement of efficiency compared to the standard method and resistance against simple power analysis without any dummy operation.

Keywords

  • hyperelliptic curve cryptosystems
  • scalar multiplication
  • theta divisor
  • signed binary representation
  • simple power analysis

Chapter PDF

Download to read the full chapter text

References

  1. Cantor, D.G.: Computing in the Jacobian of a Hyperelliptic Curve. Mathematics of Computation 48(177), 95–101 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic Curve and Hyperelliptic Curve Cryptography. Chapman & Hall, Boca Raton (2005)

    CrossRef  Google Scholar 

  3. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  4. Duquesne, S.: Montgomery Scalar Multiplication for Genus 2 Curves. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 153–168. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  5. Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving revised. Technical Report CORR 2003-81 (2003), http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-18.pdf

  6. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  7. Harley, R.: Adding.txt, Doubling.c (2000), http://cristal.inria.fr/~harley/hyper/

  8. Katagi, M., Akishita, T., Kitamura, I., Takagi, T.: Efficient Hyperelliptic Curve Cryptosystems Using Theta Divisors. IEICE Trans. Fundamentals E89-A(1), 151–160 (2006)

    CrossRef  Google Scholar 

  9. Katagi, M., Kitamura, I., Akishita, T., Takagi, T.: Novel Efficient Implementations of Hyperelliptic Curve Cryptosystems Using Degenerate Divisors. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 345–359. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  10. Kitamura, I., Katagi, M., Takagi, T.: A Complete Divisor Class Halving Algorithm for Hyperelliptic Curve Cryptosystems of Genus Two. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 146–157. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  11. Koblitz, N.: Hyperelliptic Cryptosystems. Journal of Cryptology 1, 139–150 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Lang, S.: Abelian Varieties. Springer, Heidelberg (1983)

    CrossRef  MATH  Google Scholar 

  13. Lange, T.: Formulae for Arithmetic on Genus 2 Hyperelliptic Curves. In: Applicable Algebra in Engineering, Communication and Computing, vol. 15, pp. 295–328. Springer, Heidelberg (2005)

    Google Scholar 

  14. Lim, C.H., Lee, P.J.: More Flexible Exponentiation with Precomputation. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Heidelberg (1994)

    Google Scholar 

  15. Mamiya, H., Miyaji, A., Morimoto, H.: Efficient Countermeasure against RPA, DPA, and SPA. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 343–356. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  16. Mumford, D.: Tata Lectures on Theta II, Progress in Mathematics 43, Birkhäuser (1984)

    Google Scholar 

  17. Solinas, J.A.: Low-Weight Binary Representations for Pairs of Integers., Technical Report CORR 2001-41 (2001), http://www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps

Download references

Author information

Authors and Affiliations

  1. Information Technologies Laboratories, Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo, 141-0001, Japan

    Toru Akishita, Masanobu Katagi & Izuru Kitamura

Authors
  1. Toru Akishita
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Masanobu Katagi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Izuru Kitamura
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Versailles Saint-Quentin-en-Yvelines University, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France

    Louis Goubin

  2. Information Technology R&D Center, Mitsubishi Electric Corporation, 5-1-1 Ofuna Kamakura Kanagawa, Japan

    Mitsuru Matsui

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akishita, T., Katagi, M., Kitamura, I. (2006). SPA-Resistant Scalar Multiplication on Hyperelliptic Curve Cryptosystems Combining Divisor Decomposition Technique and Joint Regular Form. In: Goubin, L., Matsui, M. (eds) Cryptographic Hardware and Embedded Systems - CHES 2006. CHES 2006. Lecture Notes in Computer Science, vol 4249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894063_12

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11894063_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46559-1

  • Online ISBN: 978-3-540-46561-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature