Abstract
Hyperelliptic Curve Cryptosystems (HECC) are competitive to elliptic curve cryptosystems in performance and security. Recently efficient scalar multiplication techniques using a theta divisor have been proposed. Their application, however, is limited to the case when a theta divisor is used for the base point. In this paper we propose efficient and secure scalar multiplication of a general divisor for genus 2 HECC over \(\mathbb{F}_{2^m}\). The proposed method is based on two novel techniques. One is divisor decomposition technique in which a general divisor is decomposed into two theta divisors. The other is joint regular form for a pair of integers that enables efficient and secure simultaneous scalar multiplication of two theta divisors. The marriage of the above two techniques achieves both about 19% improvement of efficiency compared to the standard method and resistance against simple power analysis without any dummy operation.
Keywords
- hyperelliptic curve cryptosystems
- scalar multiplication
- theta divisor
- signed binary representation
- simple power analysis
Chapter PDF
References
Cantor, D.G.: Computing in the Jacobian of a Hyperelliptic Curve. Mathematics of Computation 48(177), 95–101 (1987)
Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic Curve and Hyperelliptic Curve Cryptography. Chapman & Hall, Boca Raton (2005)
Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)
Duquesne, S.: Montgomery Scalar Multiplication for Genus 2 Curves. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 153–168. Springer, Heidelberg (2004)
Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving revised. Technical Report CORR 2003-81 (2003), http://www.cacr.math.uwaterloo.ca/techreports/2003/corr2003-18.pdf
Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)
Harley, R.: Adding.txt, Doubling.c (2000), http://cristal.inria.fr/~harley/hyper/
Katagi, M., Akishita, T., Kitamura, I., Takagi, T.: Efficient Hyperelliptic Curve Cryptosystems Using Theta Divisors. IEICE Trans. Fundamentals E89-A(1), 151–160 (2006)
Katagi, M., Kitamura, I., Akishita, T., Takagi, T.: Novel Efficient Implementations of Hyperelliptic Curve Cryptosystems Using Degenerate Divisors. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 345–359. Springer, Heidelberg (2005)
Kitamura, I., Katagi, M., Takagi, T.: A Complete Divisor Class Halving Algorithm for Hyperelliptic Curve Cryptosystems of Genus Two. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 146–157. Springer, Heidelberg (2005)
Koblitz, N.: Hyperelliptic Cryptosystems. Journal of Cryptology 1, 139–150 (1989)
Lang, S.: Abelian Varieties. Springer, Heidelberg (1983)
Lange, T.: Formulae for Arithmetic on Genus 2 Hyperelliptic Curves. In: Applicable Algebra in Engineering, Communication and Computing, vol. 15, pp. 295–328. Springer, Heidelberg (2005)
Lim, C.H., Lee, P.J.: More Flexible Exponentiation with Precomputation. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Heidelberg (1994)
Mamiya, H., Miyaji, A., Morimoto, H.: Efficient Countermeasure against RPA, DPA, and SPA. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 343–356. Springer, Heidelberg (2004)
Mumford, D.: Tata Lectures on Theta II, Progress in Mathematics 43, Birkhäuser (1984)
Solinas, J.A.: Low-Weight Binary Representations for Pairs of Integers., Technical Report CORR 2001-41 (2001), http://www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Akishita, T., Katagi, M., Kitamura, I. (2006). SPA-Resistant Scalar Multiplication on Hyperelliptic Curve Cryptosystems Combining Divisor Decomposition Technique and Joint Regular Form. In: Goubin, L., Matsui, M. (eds) Cryptographic Hardware and Embedded Systems - CHES 2006. CHES 2006. Lecture Notes in Computer Science, vol 4249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894063_12
Download citation
DOI: https://doi.org/10.1007/11894063_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46559-1
Online ISBN: 978-3-540-46561-4
eBook Packages: Computer ScienceComputer Science (R0)
