Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
Book cover

International Workshop on Cryptographic Hardware and Embedded Systems

CHES 2006: Cryptographic Hardware and Embedded Systems - CHES 2006 pp 134–147Cite as

  1. Home
  2. Cryptographic Hardware and Embedded Systems - CHES 2006
  3. Conference paper
Implementing Cryptographic Pairings on Smartcards

Implementing Cryptographic Pairings on Smartcards

  • Michael Scott18,
  • Neil Costigan18 &
  • Wesam Abdulwahab18 
  • Conference paper
  • 3234 Accesses

  • 82 Citations

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4249)

Abstract

Pairings on elliptic curves are fast coming of age as cryptographic primitives for deployment in new security applications, particularly in the context of implementations of Identity-Based Encryption (IBE). In this paper we describe the implementation of various pairings on a contemporary 32-bit smart-card, the Philips HiPerSmartTM, an instantiation of the MIPS-32 based SmartMIPSTM architecture. Three types of pairing are considered, first the standard Tate pairing on a nonsupersingular curve \(E(\mathbb{F}_p)\), second the Ate pairing, also on a nonsupersingular curve \(E(\mathbb{F}_p)\), and finally the η T pairing on a supersingular curve \(E(\mathbb{F}_{2^m})\). We demonstrate that pairings can be calculated as efficiently as classic cryptographic primitives on this architecture, with a calculation time of as little as 0.15 seconds.

Keywords

  • Elliptic curves
  • pairing-based cryptosystems
  • fast implementations

Chapter PDF

Download to read the full chapter text

References

  1. http://www.mips.com/content/Products/Architecture/SmartMIPSASE/ProductCatalog/P_SmartMIPSASE/productBrief

  2. Barreto, P.S.L.M.: The pairing-based crypto lounge, http://paginas.terra.com.br/informatica/paulobarreto/pblounge.html

  3. Barreto, P.S.L.M., Galbraith, S., O’hEigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular abelian varietie. Cryptology ePrint Archive, Report 2004/375 (2004), http://eprint.iacr.org/2004/375

  4. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  5. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  6. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  7. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. Cryptology ePrint Archive, Report 2005/133 (2005), http://eprint.iacr.org/2005/133

  8. Bertoni, G.M., Chen, L., Fragneto, P., Harrison, K.A., Pelosi, G.: Computing tate pairing on smartcards (2005), http://www.st.com/stonline/products/families/smartcard/ches2005_v4.pdf

  9. Blake, I.F., Seroussi, G., Smart, N.P. (eds.): Advances in Elliptic Curve Cryptography, vol. 2. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  10. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM Journal of Computing 32(3), 586–615 (2003)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  12. Chen, L., Cheng, Z.: Security proof of Sakai-Kasahara’s identity-based encryption scheme (2005), http://eprint.iacr.org/2005/226

  13. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure delegation of elliptic-curve pairing (2005), http://eprint.iacr.org/2005/150

  14. Coppersmith, D.: Fast evaluation of logarithms in fields of characteristics two. IEEE Transactions on Information Theory 30, 587–594 (1984)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Duursma, I., Lee, H.-S.: Tate pairing implementation for hyperelliptic curves y 2 = x p − x + d. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 111–123. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  16. Frey, G., Müller, M., Rück, H.: The Tate pairing and the discrete logarithm applied to elliptic curve cryptosystems. IEEE Transactions on Information Theory 45(5), 1717–1719 (1999)

    CrossRef  MATH  Google Scholar 

  17. Gemplus. ID based Cryptography and Smartcards (2005), http://www.gemplus.com/smart/rd/publications/pdf/Joy05iden.pdf

  18. Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic for pairing based cryptography in characteristic three. Cryptology ePrint Archive, Report2004/157 (2004), http://eprint.iacr.org/2004/157

  19. Großschädl, J., Savas, E.: Instruction set extensions for fast arithmetic in finite fields GF(p) and GF(2\(^{\mbox{m}}\)). In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 133–147. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  20. Hennessy, J., Patterson, D.: Computer Architecture - a Qualitative Approach, 3rd edn. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  21. Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. Cryptology ePrint Archive, Report2006/110 (2006), http://eprint.iacr.org/2006/110

  22. IEEE Standard Specifications for Public-Key Cryptography – IEEE Std 1363:2000. IEEE Computer Society, New York (2000)

    Google Scholar 

  23. Joux, A.: A one-round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  24. Lenstra, A.K.: Unbelievable security. Matching AES security using public key systems. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 67–86. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  25. Lercier, R.: Discrete logarithms in GF(p). Posting to NMBRTHRY List (2001)

    Google Scholar 

  26. McCullagh, N., Barreto, P.S.L.M.: Efficient and forward-secure identity-based signcryption. Cryptology ePrint Archive, Report2004/117 (2004), http://eprint.iacr.org/2004/117

  27. Menezes, A.: Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, Dordrecht (1993)

    MATH  Google Scholar 

  28. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptography. CRC Press, Boca Raton (1996), URL: http://cacr.math.uwaterloo.ca/hac

    CrossRef  Google Scholar 

  29. Miller, V.: Short programs for functions on curves (unpublished, manuscript) (1986), http://crypto.stanford.edu/miller/miller.pdf

  30. Nogami, Y., Morikawa, Y.: A fast implementation of elliptic curve cryptosystem with prime order defined over \(f_{p^8}\) (1998), http://www.trans.cne.okayama-u.ac.jp/nogami-group/papers/kiyou2.pdf

  31. Page, D., Smart, N.P., Vercauteren, F.: A comparison of MNT curves and supersingular curves. Cryptology ePrint Archive (2004), http://eprint.iacr.org/2004/165

  32. Sakai, R., Kasahara, M.: ID based cryptosystems with pairing on elliptic curve. Cryptography ePrint Archive, Report 2003/054 (2003), http://eprint.iacr.org/2003/054

  33. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The 2000 Symposium on Cryptography and Information Security, Okinawa, Japan (2000)

    Google Scholar 

  34. Scott, M.: Computing the Tate pairing. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 293–304. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  35. Scott, M.: (2006), http://ftp.computing.dcu.ie/pub/crypto/miracl.zip

  36. Scott, M., Barreto, P.: Compressed pairings. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004), Also available from: http://eprint.iacr.org/2004/032/

    Google Scholar 

  37. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    CrossRef  Google Scholar 

  38. Thomé, E.: Computation of discrete logarithms in \(\mathbb{F}_{2^{607}}\). In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 107–124. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Computer Applications, Dublin City University, Ballymun, Dublin 9, Ireland

    Michael Scott, Neil Costigan & Wesam Abdulwahab

Authors
  1. Michael Scott
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Neil Costigan
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Wesam Abdulwahab
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Versailles Saint-Quentin-en-Yvelines University, 45 Avenue des Etats-Unis, 78035, Versailles Cedex, France

    Louis Goubin

  2. Information Technology R&D Center, Mitsubishi Electric Corporation, 5-1-1 Ofuna Kamakura Kanagawa, Japan

    Mitsuru Matsui

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scott, M., Costigan, N., Abdulwahab, W. (2006). Implementing Cryptographic Pairings on Smartcards. In: Goubin, L., Matsui, M. (eds) Cryptographic Hardware and Embedded Systems - CHES 2006. CHES 2006. Lecture Notes in Computer Science, vol 4249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894063_11

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11894063_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46559-1

  • Online ISBN: 978-3-540-46561-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

167.114.118.210

Not affiliated

Springer Nature

© 2023 Springer Nature