Abstract
A novel portable hardware architecture for the Elliptic Curve Method of factoring, designed and optimized for application in the relation collection step of the Number Field Sieve, is described and analyzed. A comparison with an earlier proof-of-concept design by Pelzl, Šimka, et al. has been performed, and a substantial improvement has been demonstrated in terms of both the execution time and the area-time product. The ECM architecture has been ported across three different families of FPGA devices in order to select the family with the best performance to cost ratio. A timing comparison with a highly optimized software implementation, GMP-ECM, has been performed. Our results indicate that low-cost families of FPGAs, such as Xilinx Spartan 3, offer at least an order of magnitude improvement over the same generation of microprocessors in terms of the performance to cost ratio.
Keywords
- Cipher-breaking
- factoring
- ECM
- FPGA
Chapter PDF
References
Pollard, J.M.: Factoring with cubic integers. Lecture Notes in Mathematics, vol. 1554, pp. 4–10. Springer, Heidelberg (1993)
Lenstra, A.K., Lenstra, H.W.: The Development of the Number Field Sieve. Lecture Notes in Mathematics, vol. 1554. Springer, Heidelberg (1993)
Bahr, F., Boehm, M., Franke, J., Kleinjung, T.: Factorization of RSA-200, http://crypto-world.com/announcements/rsa200.txt
Zimmermann, P.: 20 years of ECM (preprint, 2005), http://www.loria.fr/~zimmerma/papers/ecm-submitted.pdf
Fougeron, J., Fousse, L., Kruppa, A., Newman, D., Zimmermann, P.: GMP-ECM (2005), http://www.komite.net/laurent/soft/ecm/ecm-6.0.1.html
Šimka, M., Pelzl, J., Kleinjung, T., Franke, J., Priplata, C., Stahlke, C., Drutarovsky, M., Fischer, V., Paar, C.: Hardware factorization based elliptic curve method. In: IEEE Symposium on Field-Programmable Custom Computing Machines - FCCM 2005, Napa, CA, USA (2005)
Pelzl, J., Šimka, M., Kleinjung, T., Franke, J., Priplata, C., Stahlke, C., Drutarovsky, M., Fischer, V., Paar, C.: Area-time efficient hardware architecture for factoring integers with the elliptic curve method. IEEE Proceedings on Information Security 152(1), 67–78 (2005)
Hankerson, D., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)
Lenstra, H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126, 649–673 (1987)
Brent, R.P.: Some integer factorization algorithms using elliptic curves. Australian Computer Science Communications 8, 149–163 (1986)
Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48, 243–264 (1987)
Montgomery, P.L.: An FFT extension of the elliptic curve method of factorization., Ph.D. Thesis, UCLA (1992)
Montgomery, P.L.: Modular multiplication without trivial division. Mathematics of Computation 44, 519–521 (1985)
McIvor, C., McLoone, M., McCanny, J., Daly, A., Marnane, W.: Fast Montgomery modular multiplication and RSA cryptographic processor architectures. In: Proc. 37th IEEE Computer Society Asilomar Conference on Signals, Systems and Computers, Monterey, USA, November 2003, pp. 379–384 (2003)
Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Rupp, A., Schimmler, M.: How to break DES for 8,980 Euro. In: 2nd Workshop on Special-purpose Hardware for Attacking Cryptographic Systems - SHARCS 2006, Cologne, Germany, April 3-4 (2006)
Franke, J., Kleinjung, T., Paar, C., Pelzl, J., Priplata, C., Stahlke, C.: SHARK: A realizable special hardware sieving device for factoring 1024-bit integers. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 119–130. Springer, Heidelberg (2005)
Geiselmann, W., Januszewski, F., Koepfer, H., Pelzl, J., Steinwandt, R.: A simpler sieving device: Combining ECM and TWIRL, Cryptology ePrint Archive, http://eprint.iacr.org/2006/109
SRC Computers, Inc., http://www.srccomp.com
Silverman, R.D., Wagstaff, S.S.: A practical analysis of the elliptic curve factoring algorithm. Mathematics of Computation 61(203), 462–465 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gaj, K. et al. (2006). Implementing the Elliptic Curve Method of Factoring in Reconfigurable Hardware. In: Goubin, L., Matsui, M. (eds) Cryptographic Hardware and Embedded Systems - CHES 2006. CHES 2006. Lecture Notes in Computer Science, vol 4249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11894063_10
Download citation
DOI: https://doi.org/10.1007/11894063_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46559-1
Online ISBN: 978-3-540-46561-4
eBook Packages: Computer ScienceComputer Science (R0)
