Abstract
Microarray technology produces vast amounts of data by measuring simultaneously the expression levels of thousands of genes under hundreds of biological conditions. Nowadays, one of the principal challenges in bioinformatics is the interpretation of huge data using different sources of information.
We propose a novel data analysis method named CGGA (Co-expressed Gene Groups Analysis) that automatically finds groups of genes that are functionally enriched, i.e. have the same functional annotations, and are co-expressed.
CGGA automatically integrates the information of microarrays, i.e. gene expression profiles, with the functional annotations of the genes obtained by the genome-wide information sources such as Gene Ontology (GO).
By applying CGGA to well-known microarray experiments, we have identified the principal functionally enriched and co-expressed gene groups, and we have shown that this approach enhances and accelerates the interpretation of DNA microarray experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Attwood, T., Miller, C.J.: Which craft is best in bioinformatics? Computer Chemistry 25, 329–339 (2001)
Breitling, R., Amtmann, A., Herzyk, P.: IGA: A simple tool to enhance sensitivity and facilitate interpretation of microarray experiments. BMC Bioinformatics 5, 34 (2004)
Chuaqui, R.: Post-analysis follow-up and validation of microarray experiments. Nature Genetics 32, 509–514 (2002)
DeRisi, J., Iyer, L., Brown, V.: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997)
Draghici, S., et al.: Global functional profiling of gene expression. Genomics 81, 1–7 (2003)
Gibbons, D., Roth, F., et al.: Judging the quality of gene expression-Based Clustering Methods Using Gene Annotation. Genome Research 12, 1574–1581 (2002)
Hosack, D., Dennis, G., et al.: Identifying biological themes within lists of genes with EASE. Genome Biology 4, R70 (2003)
Kim, S., Volsky, D., et al.: PAGE: Parametric Analysis of Gene Set Enrichment. BMC Bioinformatics 6, 144 (2005)
Masys, D., et al.: Use of keyword hierarchies to interpret gene expressions patterns. BMC Bioinformatics 17, 319–326 (2001)
Mootha, V., et al.: PGC-l α-reponsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics 34(3), 267–273 (2003)
Pasquier, C., Girardot, F., Jevardat, K., Christen, R.: THEA: Ontology-driven analysis of microarray data. Bioinformatics 20(16) (2004)
Quackenbush, J.: Microarray data normalization and transformation. Nature Genetics 32(suppl.), 496–501 (2002)
Riva, A., Carpentier, A., Torresani, B., Henaut, A.: Comments on selected fundamental aspects of microarray analysis. Computational Bio. and Chem. 29, 319–336 (2005)
Robinson, M., et al.: FunSpec: A web based cluster interpreter for yeast. BMC Bioinformatics 3, 35 (2002)
Sung, G., Jung, U., Yang, K.: A graph theoretic modeling on GO space for biological interpretation of gene clusters. BMC Bioinformatics 3, 381–386 (2004)
Tusher, V., Tibshirani, R., Chu, G., et al.: Significance analysis of microarrays applied to the ionizing radiation response. In: Proc. Nat. Acad. Sci. USA, vol. 98(9), pp. 5116–5121 (2001)
Martinez, R., et al.: CGGA: An automatic tool for the interpretation of gene expression experiments. Accepted on the Journal of Integrative Bioinformatics (to appear, 2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martinez, R., Pasquier, N., Pasquier, C., Lopez-Perez, L. (2006). Interpreting Microarray Experiments Via Co-expressed Gene Groups Analysis (CGGA). In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds) Discovery Science. DS 2006. Lecture Notes in Computer Science(), vol 4265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893318_34
Download citation
DOI: https://doi.org/10.1007/11893318_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46491-4
Online ISBN: 978-3-540-46493-8
eBook Packages: Computer ScienceComputer Science (R0)