Skip to main content

Interpreting Microarray Experiments Via Co-expressed Gene Groups Analysis (CGGA)

  • Conference paper
Discovery Science (DS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4265))

Included in the following conference series:

  • 1245 Accesses

Abstract

Microarray technology produces vast amounts of data by measuring simultaneously the expression levels of thousands of genes under hundreds of biological conditions. Nowadays, one of the principal challenges in bioinformatics is the interpretation of huge data using different sources of information.

We propose a novel data analysis method named CGGA (Co-expressed Gene Groups Analysis) that automatically finds groups of genes that are functionally enriched, i.e. have the same functional annotations, and are co-expressed.

CGGA automatically integrates the information of microarrays, i.e. gene expression profiles, with the functional annotations of the genes obtained by the genome-wide information sources such as Gene Ontology (GO).

By applying CGGA to well-known microarray experiments, we have identified the principal functionally enriched and co-expressed gene groups, and we have shown that this approach enhances and accelerates the interpretation of DNA microarray experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Attwood, T., Miller, C.J.: Which craft is best in bioinformatics? Computer Chemistry 25, 329–339 (2001)

    Article  Google Scholar 

  2. Breitling, R., Amtmann, A., Herzyk, P.: IGA: A simple tool to enhance sensitivity and facilitate interpretation of microarray experiments. BMC Bioinformatics 5, 34 (2004)

    Article  Google Scholar 

  3. Chuaqui, R.: Post-analysis follow-up and validation of microarray experiments. Nature Genetics 32, 509–514 (2002)

    Article  Google Scholar 

  4. DeRisi, J., Iyer, L., Brown, V.: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997)

    Article  Google Scholar 

  5. Draghici, S., et al.: Global functional profiling of gene expression. Genomics 81, 1–7 (2003)

    Article  Google Scholar 

  6. Gibbons, D., Roth, F., et al.: Judging the quality of gene expression-Based Clustering Methods Using Gene Annotation. Genome Research 12, 1574–1581 (2002)

    Article  Google Scholar 

  7. Hosack, D., Dennis, G., et al.: Identifying biological themes within lists of genes with EASE. Genome Biology 4, R70 (2003)

    Google Scholar 

  8. Kim, S., Volsky, D., et al.: PAGE: Parametric Analysis of Gene Set Enrichment. BMC Bioinformatics 6, 144 (2005)

    Article  Google Scholar 

  9. Masys, D., et al.: Use of keyword hierarchies to interpret gene expressions patterns. BMC Bioinformatics 17, 319–326 (2001)

    Google Scholar 

  10. Mootha, V., et al.: PGC-l α-reponsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics 34(3), 267–273 (2003)

    Article  Google Scholar 

  11. Pasquier, C., Girardot, F., Jevardat, K., Christen, R.: THEA: Ontology-driven analysis of microarray data. Bioinformatics 20(16) (2004)

    Google Scholar 

  12. Quackenbush, J.: Microarray data normalization and transformation. Nature Genetics 32(suppl.), 496–501 (2002)

    Article  Google Scholar 

  13. Riva, A., Carpentier, A., Torresani, B., Henaut, A.: Comments on selected fundamental aspects of microarray analysis. Computational Bio. and Chem. 29, 319–336 (2005)

    Article  MATH  Google Scholar 

  14. Robinson, M., et al.: FunSpec: A web based cluster interpreter for yeast. BMC Bioinformatics 3, 35 (2002)

    Article  Google Scholar 

  15. Sung, G., Jung, U., Yang, K.: A graph theoretic modeling on GO space for biological interpretation of gene clusters. BMC Bioinformatics 3, 381–386 (2004)

    Google Scholar 

  16. Tusher, V., Tibshirani, R., Chu, G., et al.: Significance analysis of microarrays applied to the ionizing radiation response. In: Proc. Nat. Acad. Sci. USA, vol. 98(9), pp. 5116–5121 (2001)

    Google Scholar 

  17. Martinez, R., et al.: CGGA: An automatic tool for the interpretation of gene expression experiments. Accepted on the Journal of Integrative Bioinformatics (to appear, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martinez, R., Pasquier, N., Pasquier, C., Lopez-Perez, L. (2006). Interpreting Microarray Experiments Via Co-expressed Gene Groups Analysis (CGGA). In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds) Discovery Science. DS 2006. Lecture Notes in Computer Science(), vol 4265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893318_34

Download citation

  • DOI: https://doi.org/10.1007/11893318_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46491-4

  • Online ISBN: 978-3-540-46493-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics