Synthesis of Desired Binary Cellular Automata Through the Genetic Algorithm

  • Satoshi Suzuki
  • Toshimichi Saito
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4234)


This paper presents a GA-based synthesis algorithm of a cellular automaton ( CA ) that can generate a desired spatio-temporal pattern. Time evolution of CA is determined by a rule table the number of which is enormous even for relatively small size CAs: the brute-force search is almost impossible. In our GA-based synthesis algorithm, a gene corresponds to a rule and a masking technique is used to preserve gene(s) with good fitness. Performing basic numerical experiments we have confirmed that the masking works effectively and the algorithm can generate a desired rule table. We have also considered an application to reduction of noise inserted randomly to a spatio-temporal pattern.


Genetic Algorithm Cellular Automaton Block Cipher Coincidence Rate Rule Table 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolfram, S.: Universality and Complexity in Cellular Automata. Physica D 10, 1–35 (1984)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chua, L.O., Yoon, S., Dogaru, R.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part I: Threshold of complexity. Int. J. Bifurcation and Chaos 12, 2655–2766 (2002)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Perrier, J.Y., Sipper, M., Zahnd, J.: Toward a viable, self-reproducing universal computer. Physica D 87, 335–352 (1996)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Lohn, J.D., Reggia, J.A.: Automatic discovery of self-replicating structures in cellular automata. IEEE Trans. Evolutionary Computation 1(3), 165–178 (1997)CrossRefGoogle Scholar
  5. 5.
    Bull, L., Lawson, I., Adamatzky, A., De LacyCostello, B.: Towards predicting spatial complexity: a learning classifier system approach to cellular automata identification. In: Proc. of CEC, pp. 136–141 (2005)Google Scholar
  6. 6.
    Seredynski, M., Bouvry, P.: Block Cipher based on Reversible Cellular Automa. In: Proc. of CEC, pp. 2138–2143 (2004)Google Scholar
  7. 7.
    Wada, M., Kuroiwa, J., Nara, S.: Completely reproducible description of digital sound data with cellular automata. Phys. Lett. A 306, 110–1158 (2002)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Wada, M., Kuroiwa, J., Nara, S.: Errorless reproduction of given pattern dynamics by means of cellular automata. Phys. Rev. E 68 036707, 1–8 (2003)Google Scholar
  9. 9.
    Kajisha, H., Saito, T.: Synthesis of self-replication cellular automata using genetic algorithms. In: Proc. of IJCNN, V, pp. 173–177 (2000)Google Scholar
  10. 10.
    Yamamichi, T., Saito, T., Taguchi, K., Torikai, H.: Synthesis of binary cellular automata based on binary neural networks. In: Proc. of IJCNN, pp. 1361–1364 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Satoshi Suzuki
    • 1
  • Toshimichi Saito
    • 1
  1. 1.Hosei UniversityKoganeiJapan

Personalised recommendations