Advertisement

Word Frequency Effect and Word Similarity Effect in Korean Lexical Decision Task and Their Computational Model

  • YouAn Kwon
  • KiNam Park
  • HeuiSeok Lim
  • KiChun Nam
  • Soonyoung Jung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4234)

Abstract

In this paper, we investigate whether the word frequency effect and the word similarity effect could be applied to Korean lexical decision task (henceforth, LDT). Also we propose a computational model of Korean LDT and present comparison results between human and computational model on Korean LDT. We found that the word frequency effect and the similarity effect in Korean LDT were language general phenomena in both the behavioral experiment and the proposed computational simulation.

Keywords

Lexical Decision Word Frequency Lexical Access Hide Unit Semantic Priming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, S.: Frequency and Neighborhood Effects on Lexical Access: Lexical Similarity or Orthographic Redundancy? Journal of Experimental Psychology: Learning, Memory, and Cognition 18, 234–254 (1992)CrossRefGoogle Scholar
  2. 2.
    Becker, C.A.: Semantic context and word frequency effects in visual word recognition. Journal of Experimental Psychology: Human Preception and Performance 5, 252–259 (1979)CrossRefGoogle Scholar
  3. 3.
    Chambers, S.M.: Letter and order information in lexical access. Journal of Verbal Learning and Verbal Behavior 18, 225–241 (1979)CrossRefGoogle Scholar
  4. 4.
    Forster, K.I.: Accessing the mental lexicon. In: Walker, E.C.J., Wales, R.J. (eds.) New approaches to language mechni, North-Holland, Amsterdam (1976)Google Scholar
  5. 5.
    Grainger, J., Muneaux, M., Farioli, F., Ziegler, J.C.: Effects of phonological and orthographic neighborhood density interaction in visual word recognition. The Quarterly Journal of Experimental Psychology 58A(6), 779–793 (2005)Google Scholar
  6. 6.
    Hinton, G.E., Shallice, T.: Lesioning an attractor network: Investigatins of acquired dyslexia. Psychological Review 98(1), 74–95 (1991)CrossRefGoogle Scholar
  7. 7.
    Lim, H.S., Nam, K., Hwang, Y.: A Computational Model of Korean Mental Lexicon. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 1129–1134. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    McClelland, J.L., Rumelhart, D.E.: An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review 88, 375–407 (1981)CrossRefGoogle Scholar
  9. 9.
    Morton, J.: Interaction of information in word recognition. Psychological Review 76, 165–178 (1969)CrossRefGoogle Scholar
  10. 10.
    O’Connor, R.E., Forster, K.I.: Criterion bias and search sequence bias in word recognition. Memory and Cognition 9, 78–92 (1981)CrossRefGoogle Scholar
  11. 11.
    Plaut, D.C., Shallice, T.: Deep dyslexia: A case study of connectionist neuropsychology. Cognitive Neuropsychology 10(5), 377–500 (1993)CrossRefGoogle Scholar
  12. 12.
    Taft, M.: Reading and The Mental Lexicon. Lawrence Erlbaum Associates, Hove (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • YouAn Kwon
    • 1
  • KiNam Park
    • 2
  • HeuiSeok Lim
    • 3
  • KiChun Nam
    • 1
  • Soonyoung Jung
    • 2
  1. 1.Department of PsychologyKorea UniversityKorea
  2. 2.Department of Computer EducationKorea UniversityKorea
  3. 3.Division of Computer, Information, and SoftwareHanshin UniversityKorea

Personalised recommendations