Visualization of Depending Patterns in Metabonomics

  • Stefan Roeder
  • Ulrike Rolle-Kampczyk
  • Olf Herbarth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4234)


This paper describes an approach for visualization of patterns in large data sets. The data sets are combined from external exposure and internal stress factors on human health. For deduction of modes of action on human health, external and internal stress factors have to be combined and classified. The approach shown in this paper is based upon clustering algorithms. Relationships between cases ban be obtained by visual inspection of clustering results.


Cluster Algorithm Volatile Organic Compound Color Code External Exposure Dimensional View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kohonen, T.: Self Organizing Maps. Series in Computer Sciences. Springer, Heidelberg (1997)MATHGoogle Scholar
  2. 2.
    Zampighi, L.M., Kavanau, C.L., Zampighi, C.A.: The Kohonen self-organizing map: a tool for the clustering and alignment of single particles imaged using random conical tilt. Journal of Structural Biology 146, 368–380 (2004)CrossRefGoogle Scholar
  3. 3.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paatero, V., Saarela, A.: Self organizing of a massive document collection. IEEE Transactions on Neural Networks 11, 574–585 (2000)CrossRefGoogle Scholar
  5. 5.
    Rhee, J.I., Lee, K.I., Kim, C.K., Yim, Y.S., Chung, S.W., Wei, J., Bellgardt, K.H.: Classification of two-dimensional fluorescence sprectra using self-organizing maps. Biochemical Engineering Journal 22, 135–144 (2005)CrossRefGoogle Scholar
  6. 6.
    Joliffe, I.T.: Discarding variables in a principal component analysis I: artificial data. Applied Statistics 21, 373–374 (1972)CrossRefGoogle Scholar
  7. 7.
    Joliffe, I.T.: Discarding variables in a principal component analysis II: real data. Applied Statistics 22, 21–23 (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stefan Roeder
    • 1
  • Ulrike Rolle-Kampczyk
    • 1
  • Olf Herbarth
    • 1
    • 2
  1. 1.Department Human Exposure Research/EpidemiologyUFZ – Centre for Environmental Research Leipzig-Halle Ltd.LeipzigGermany
  2. 2.Faculty of MedicineUniversity of LeipzigLeipzigGermany

Personalised recommendations