Evolving Hierarchical RBF Neural Networks for Breast Cancer Detection

  • Yuehui Chen
  • Yan Wang
  • Bo Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4234)


Hierarchical RBF networks consist of multiple RBF networks assembled in different level or cascade architecture. In this paper, an evolved hierarchical RBF network was employed to detect the breast cancel. For evolving a hierarchical RBF network model, Extended Compact Genetic Programming (ECGP), a tree-structure based evolutionary algorithm and the Differential Evolution (DE) are used to find an optimal detection model. The performance of proposed method was then compared with Flexible Neural Tree (FNT), Neural Network (NN), and RBF Neural Network (RBF-NN) by using the same breast cancer data set. Simulation results show that the obtained hierarchical RBF network model has a fewer number of variables with reduced number of input features and with the high detection accuracy.


Breast Cancer Detection Breast Cancer Data Gaussian Radial Basis Function High Detection Accuracy Multiple Neural Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Silva, C.J.S., et al.: Artificial Neural networks and Breast Cancer Prognosis. The Australian Computer Journal 26, 78–81 (1994)Google Scholar
  2. 2.
    The Weekend Australia, Health Section, July 13-14, pp. 7 (2002)Google Scholar
  3. 3.
    Fogel, D.B., Wasson, E.C., Boughton, E.M., Porto, V.W.: A step toward computer-assisted mammography using evolutionary programming and neural networks. Cancer Letters 119(1), 93–97 (1997)CrossRefGoogle Scholar
  4. 4.
    Kahn Jr., C.E., Roberts, L.M., Shafferand, K.A., Haddawy, P.: Construction of a Bayesian network for mammographic diagnosis of breast cancer. Computers in Biology and Medicine 27(1), 19–29 (1997)CrossRefGoogle Scholar
  5. 5.
    Morio, S., Kawahara, S., Okamoto, N., Suzuki, T., Okamoto, T., Haradas, M., Shimizu, A.: An expert system for early detection of cancer of the breast. Computers in Biology and Medicine 19(5), 295–305 (1989)CrossRefGoogle Scholar
  6. 6.
    Hulka, B.S., Moorman, P.G.: Breast Cancer: Hormones and Other Risk Factors. Maturitas 38(1), 103–113 (2001)CrossRefGoogle Scholar
  7. 7.
    Jain, R., Abraham, A.: A Comparative Study of Fuzzy Classifiers on Breast Cancer Data. Australiasian Physical And Engineering Sciences in Medicine 27(4), 147–152 (2004)Google Scholar
  8. 8.
    Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical report, International Computer Science Institute, Berkley (1995)Google Scholar
  9. 9.
    Price, K.: Differential Evolution vs. the Functions of the 2nd ICEO. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC 1997), Indianapolis, USA, pp. 153–157 (1997)Google Scholar
  10. 10.
    Chen, Y., Yang, B., Dong, J.: Nonlinear systems modelling via optimal design of neural trees. International Journal of Neural ystems 14, 125–138 (2004)CrossRefGoogle Scholar
  11. 11.
    Chen, Y., Yang, B., Dong, J., Abraham, A.: Time-series forcasting using flexible neural tree model. Information Science 174(3/4), 219–235 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Chen, Y., Abraham, A., Yang, B.: Hybrid Neurocomputing for Breast Cancer Detection. In: The Fourth International Workshop on Soft Computing as Transdisciplinary Science and Technology (WSTST 2005), pp. 884–892. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Chen, Y., Yang, B., Dong, J.: Evolving Flexible Neural Networks using Ant Programming and PSO algorithm. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 211–216. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Mat Isa, N.A., Mashor, M.Y., Othman, N.H.: Diagnosis of Cervical Cancer using Hierarchical Radial Basis Function (HiRBF) Network. In: Yaacob, S., Nagarajan, R., Chekima, A. (eds.) Proceedings of the International Conference on Artificial Intelligence in Engineering and Technology, pp. 458–463 (2002)Google Scholar
  15. 15.
    Ferrari, S., Frosio, I., Piuri, V., Alberto Borghese, N.: Automatic Multiscale Meshing Through HRBF Networks. IEEE Trans. on Instrumentation and Measurment 54(4), 1463–1470 (2005)CrossRefGoogle Scholar
  16. 16.
    Ahmad, Z., Zhang, J.: Bayesian selective combination of multiple neural networks for improving long-range predictions in nonlinear process modelling. Neural Comput. & Applic. 14, 78–87 (2005)CrossRefGoogle Scholar
  17. 17.
    Sastry, K., Goldberg, D.E.: Probabilistic model building and competent genetic programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practise, ch. 13, pp. 205–220. Kluwer, Dordrecht (2003)Google Scholar
  18. 18.
    Merz J., Murphy, P.M.: UCI repository of machine learning databases (1996),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yuehui Chen
    • 1
  • Yan Wang
    • 1
  • Bo Yang
    • 1
  1. 1.School of Information Science and EngineeringJinan UniversityJinanP.R. China

Personalised recommendations