Sparse Bump Sonification: A New Tool for Multichannel EEG Diagnosis of Mental Disorders; Application to the Detection of the Early Stage of Alzheimer’s Disease

  • François B. Vialatte
  • Andrzej Cichocki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4234)


This paper investigates the use of sound and music as a means of representing and analyzing multichannel EEG recordings. Specific focus is given to applications in early detection and diagnosis of early stage of Alzheimer’s disease. We propose here a novel approach based on multi channel sonification, with a time-frequency representation and sparsification process using bump modeling. The fundamental question explored in this paper is whether clinically valuable information, not available from the conventional graphical EEG representation, might become apparent through an audio representation. Preliminary evaluation of the obtained music score – by sample entropy, number of notes, and synchronous activity – incurs promising results.


Independent Component Analysis Independent Component Analysis Blind Source Separation Brain Computer Interface Sample Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hermann, T., Meinicke, P., Bekel, H., Ritter, H., Müller, H.M., Weiss, S.: Sonifications for EEG data analysis. In: Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2–5 (2002)Google Scholar
  2. 2.
    Jovanov, E., Starcevic, D., Karron, D., Wegner, K., Radivojevic, V.: Acoustic Rendering as Support for Sustained Attention during Biomedical Procedures. In: International Conference on Auditory Display ICAD 1998, Glasgow (1998)Google Scholar
  3. 3.
    Baier, G., Hermann, T.: The sonification of rhythms in human electroencephalogram. In: Proceedings of ICAD 2004-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia (2004)Google Scholar
  4. 4.
    Miranda, E.R., Brouse, A.: Interfacing the Brain Directly with Musical Systems: On developing systems for making music with brain signals. Leonardo 38(4), 331–336 (2005)CrossRefGoogle Scholar
  5. 5.
    Musha, T., Asada, T., Yamashita, F., Kinoshita, T., Chen, Z., Matsuda, H., Masatake, U., Shankle, W.R.: A new EEG method for estimating cortical neuronal impairment that is sensitive to early stage Alzheimer’s disease. Clinical Neurophysiology 113(7), 1052–1058 (2002)CrossRefGoogle Scholar
  6. 6.
    Tallon-Baudry, C., Bertrand, O., Delpuech, C., Pernier, J.: Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. Journal of Neuroscience 16, 4240–4249 (1996)Google Scholar
  7. 7.
    Vialatte, F.: Modélisation en bosses pour l’analyse des motifs oscillatoires reproductibles dans l’activité de populations neuronales : applications à l’apprentissage olfactif chez l’animal et à la détection précoce de la maladie d’Alzheimer. PhD Thesis, Paris VI University, Paris (2005), Available from
  8. 8.
    Vialatte, F.B., Martin, C., Dubois, R., Haddad, J., Quenet, B., Gervais, R., Dreyfus, G.: A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics. Neural networks (in press)Google Scholar
  9. 9.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing, pp. 425–430. Cambridge Univ. Press, New York (1992)Google Scholar
  10. 10.
    Rutkowski, T.M., Vialatte, F., Cichocki, A., Mandic, D.P., Barros, A.K.: Auditory Feedback for Brain Computer Interface Management - An EEG Data Sonifcation Approach. In: KES 2006, 10th International Conference on Knowledge-Based & Intelligent Information & Engineering Systems, Bournemouth, England (in press, 2006)Google Scholar
  11. 11.
    Vialatte, F., Cichocki, A., Dreyfus, G., Musha, T., Rutkowski, T., Gervais, R.: Blind source separation and sparse bump modelling of time frequency representation of EEG signals: New tools for early detection of Alzheimer’s disease. In: IEEE Sign. Proc. Soc. Workshop on MLSP, Mystic, USA, pp. 27–32 (2005)Google Scholar
  12. 12.
    Babiloni, C., Ferri, R., Binetti, G., Cassarino, A., Forno, G.D., Ercolani, M., Ferreri, F., Frisoni, G.B., Lanuzza, B., Miniussi, C., Nobili, F., Rodriguez, G., Rundo, F., Stam, C.J., Musha, T., Vecchio, F., Rossini, P.M.: Fronto-parietal coupling of brain rhythms in mild cognitive impairment: A multicentric EEG study. Brain Research Bulletin 69(1), 63–73 (2006)CrossRefGoogle Scholar
  13. 13.
    Vialatte, F.: MIDI multi channel EEG sonification of PMCI and Control subjects (Fronto-Parietal multichannel sonification). Riken BSI (April 2006), Available from
  14. 14.
    Richaman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. American journal of physiology Heart and circulatory physiology 278, H2039–H2049 (2000)Google Scholar
  15. 15.
    Adler, G., Brassen, S., Jajcevic, A.: EEG coherence in Alzheimer’s dementia. Journal of Neural Transmission 110(9), 1051–1058 (2003)CrossRefGoogle Scholar
  16. 16.
    Brinkmeyer, J., Grass-Kapanke, B., Ihl, R.: EEG and the Test for the Early Detection of Dementia with Discrimination from Depression (TE4D): a validation study. International Journal of Geriatric Psyhiatry 19, 749–753 (2004)CrossRefGoogle Scholar
  17. 17.
    Stam, C.J., Montez, T., Jones, B.F., Rombout, S.A.R.B., van der Made, Y., Pijnenburg, Y.A.L., Scheltens, P.: Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease. Clinical Neurophysiology 116, 708–715 (2005)CrossRefGoogle Scholar
  18. 18.
    Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience 2(4), 229–239 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • François B. Vialatte
    • 1
  • Andrzej Cichocki
    • 1
  1. 1.BSI RIKEN ABSP Lab 2-1 HirosawaWako-ShiJapan

Personalised recommendations