Image Reconstruction Using Genetic Algorithm in Electrical Impedance Tomography

  • Ho-Chan Kim
  • Chang-Jin Boo
  • Min-Jae Kang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4234)


In electrical impedance tomography (EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a genetic algorithm technique for the solution of the static EIT inverse problem. The computer simulation for the 32 channels synthetic data shows that the spatial resolution of reconstructed images in the proposed scheme is improved compared to that of the modified Newton–Raphson algorithm at the expense of increased computational burden.


Genetic Algorithm Electrical Impedance Tomography Resistivity Distribution Mesh Group Resistivity Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Webster, J.G.: Electrical Impedance Tomography, Adam Hilger (1990)Google Scholar
  2. 2.
    Yorkey, T.J., Webster, J.G., Tompkins, W.J.: Comparing Reconstruction Algorithms for Electrical Impedance Tomography. IEEE Trans. on Biomed. Eng. 34, 843–852 (1987)CrossRefGoogle Scholar
  3. 3.
    Glidewell, M., Ng, K.T.: Anatomically Constrained Electrical Impedance Tomography for Anisotropic Bodies Via a Two-step Approach. IEEE Trans. on Med. Imag. 14, 498–503 (1995)CrossRefGoogle Scholar
  4. 4.
    Cho, K.H., Kim, S., Lee, Y.J.: Impedance Imaging of Two-phase Flow Field with Mesh Grouping. Nuclear Engineering and Design 204, 57–67 (2001)CrossRefGoogle Scholar
  5. 5.
    Olmi, R., Bini, M., Priori, S.: A Genetic Algorithm Approach to Image Reconstruction in Electrical Impedance Tomography. IEEE Trans. on Evolutionary Comput. 4, 83–87 (2000)CrossRefGoogle Scholar
  6. 6.
    Vauhkonen, M.: Electrical Impedance Tomography and Priori Information, Kuopio Univerisity Publications Co., Natural and Environmental Sciences 62 (1997)Google Scholar
  7. 7.
    Cohen-Bacrie, C., Goussard, Y., Guardo, R.: Regularized Reconstruction in Electrical Impedance Tomography Using a Variance Uniformization Constraint. IEEE Trans. on Medical Imaging 16, 170–179 (1997)CrossRefGoogle Scholar
  8. 8.
    Kim, H.C., Boo, C.J., Lee, Y.J.: Image Reconstruction using Simulated Annealing Algorithm in EIT. Int. J. of Control, Automation, and Systems 3, 211–216 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ho-Chan Kim
    • 1
  • Chang-Jin Boo
    • 1
  • Min-Jae Kang
    • 1
  1. 1.Faculty of Electrical and Electronic EngineeringCheju National UniversityJeju, Jeju-doKorea

Personalised recommendations