Message-Passing for Inference and Optimization of Real Variables on Sparse Graphs

  • K. Y. Michael Wong
  • C. H. Yeung
  • David Saad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4233)


The inference and optimization in sparse graphs with real variables is studied using methods of statistical mechanics. Efficient distributed algorithms for the resource allocation problem are devised. Numerical simulations show excellent performance and full agreement with the theoretical results.


Recursion Relation Real Variable Average Cost Resource Allocation Problem Sparse Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jordan, M.I. (ed.): Learning in Graphical Models. MIT Press, Cambridge (1999)Google Scholar
  2. 2.
    Opper, M., Saad, D.: Advanced Mean Field Methods. MIT Press, Cambridge (2001)MATHGoogle Scholar
  3. 3.
    MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms, CUP UK (2003)Google Scholar
  4. 4.
    Skantzos, N.S., Castillo, I.P., Hatchett, J.P.L.: arXiv:cond-mat/0508609 (2005)Google Scholar
  5. 5.
    Peterson, L., Davie, B.S.: Computer Networks: A Systems Approach. Academic Press, San Diego (2000)Google Scholar
  6. 6.
    Shenker, S., Clark, D., Estrin, D., Herzog, S.: ACM Computer Comm. Review 26, 19 (1996)Google Scholar
  7. 7.
    Bertsekas, D.: Linear Network Optimzation. MIT Press, Cambridge (1991)Google Scholar
  8. 8.
    Wong, K.Y.M., Saad, D.: arXiv:cond-mat/0509794 (2005)Google Scholar
  9. 9.
    Mézard, M., Parisi, P., Virasoro, M.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)MATHGoogle Scholar
  10. 10.
    Kelly, F.P.: Euro. Trans. on Telecommunications & Related Technologies 8, 33 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • K. Y. Michael Wong
    • 1
  • C. H. Yeung
    • 1
  • David Saad
    • 2
  1. 1.Department of PhysicsHong Kong University of Science and TechnologyHong KongChina
  2. 2.NCRGAston UniversityBirminghamUK

Personalised recommendations