Advertisement

The Forgetting Gradient Algorithm for Parameter and Intersample Estimation of Dual-Rate Systems

  • Yang Hui-zhong
  • Tian Jun
  • Ding Feng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4233)

Abstract

Multirate systems are abundant in process industry, many soft-sensor design problems are related to modeling, parameter identification, or state estimation involving multirate systems. In this paper, a polynomial transformation technique has been used to derive a dual-rate model with a finite number of parameters; based on this model, the dual-rate forgetting gradient algorithm has been used to estimate the model parameters and intersample outputs based on the dual-rate input-output data directly. Furthermore, convergence properties of the algorithms in the stochastic framework are studied and show that 1) the parameter estimation error consistently converges to zero under the persistent excitation condition; 2) the intersample output estimation error is uniformly bounded. Finally, a simulation example show excellent effectiveness in parameter and output estimation.

Keywords

Model Predictive Control Distillation Column Output Estimation Stochastic Framework Parameter Estimation Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ohshima, M., Hashimoto, I., Takeda, M., Yoneyama, T.: Multirate multivariable model predictive control and its application to a semi-commercial polymerization reactor. In: Proceedings of the 1992 American Control Conference, Chicago, USA, pp. 1576–1581 (1992)Google Scholar
  2. 2.
    Gudi, R.D., Shah, S.L., Gray, M.R.: Multirate state and parameter estimation in an antibiotic fermentation with delayed measurements. Biotechnology and Bioengineering 44, 1271–1278 (1994)CrossRefGoogle Scholar
  3. 3.
    Li, D.G., Shah, S.L., Chen, T., Qi, K.Z.: Application of dual-rate modeling to CCR octane quality inferential control. IEEE Transactions on Control Systems Technology 11, 43–51 (2003)CrossRefGoogle Scholar
  4. 4.
    Gudi, R.D., Shah, S.L., Gray, M.R.: Adaptive multirate state and parameter estimation strategies with application to a bioreactor. AIChE J 41, 2451–2464 (1995)CrossRefGoogle Scholar
  5. 5.
    Huang, Z.W., Xu, Y.M., Fang, C.Z., Tang, J.: Improvements in dynamic compartmental modelling of distillation columns. Journal of Process Control 3, 139–145 (1993)CrossRefGoogle Scholar
  6. 6.
    Li, D., Shah, S.L., Chen, T.: Analysis of dual-rate inferential control systems. Automatica 38, 1053–1059 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ding, F., Chen, T.: Adaptive control of dual-rate systems based on least squares methods. In: Proceeding s of 2004 American Control Conference (ACC), Boston, Massachusetts, USA, pp. 3508–3513 (2004)Google Scholar
  8. 8.
    Lu, W.P., Fisher, D.G.: Least-squares output estimation with multirate sampling. IEEE Transactions on Automatic Control 34, 669–672 (1989)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lu, W.P., Fisher, D.G.: Output estimation with multi-rate sampling. International Journal of Control 48, 149–160 (1998)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ding, F., Chen, T.: Parameter estimation of dual-rate stochastic systems by using an output error method. IEEE Transactions on Automatic Control 50, 1436–1441 (2005)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Ding, F., Chen, T.: Identification of dual-rate systems based on finite impulse response models. International Journal of Adaptive Control and Signal Processing 18, 589–598 (2004)MATHCrossRefGoogle Scholar
  12. 12.
    Ding, F., Chen, T.: Modeling and identification for multirate systems. Acta Automatica Sinica 31, 105–122 (2005)MathSciNetGoogle Scholar
  13. 13.
    Ding, F., Chen, T.: Parameter identification and intersample output estimation of a class of dual-rate systems. In: The 42nd Conference on Decision and Control, December 9-12, 2003, Hyatt Regency Maui, Hawaii, USA (2003)Google Scholar
  14. 14.
    Ding, F., Yang, J.: The convergence analysis of stochastic gradient algorithm. Journal of Tsinghua University 39, 83–86 (1999)MATHMathSciNetGoogle Scholar
  15. 15.
    Xie, X., Ding, F.: Adaptive control system. Tingshua University press, Beijing (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yang Hui-zhong
    • 1
  • Tian Jun
    • 1
  • Ding Feng
    • 1
  1. 1.Research Center of Control Science and EngineeringSouthern Yangtze UniversityWuxiP.R. China

Personalised recommendations