A New Mechanism on Brain Information Processing—Energy Coding

  • Rubin Wang
  • Zhikang Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4232)


According to the experimental result of signal transmission with energetic demand tightly coupled to the information coding in cerebral cortex and electric structural property in neuronal activities, we present a brand-new scientific theory with mechanism of brain information processing. According to the new theory, we discover that neural coding under action of stimulation in brain is complete with way of energy coding. Due to energy coding to be able to reveal mechanism of brain information processing in physical essence, we can not only finely reappear various experimental results of neuro-electrophysiology, but also quantitatively explain the experimental results from neuroscientists at Yale University in recently by means of the principle of energy coding.


Rest Membrane Potential Apply Physic Letter Neural Code Biological Neural Network Frequency Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levy, W.B., Baxter, R.A.: Energy Efficient Neural Codes. Neural Comp. 8, 531–543 (1996)CrossRefGoogle Scholar
  2. 2.
    Levy, W.B., Baxter, R.A.: Energy-Efficient Neuronal Computational via Quantal Synaptic Failures. The Journal of Neuroscience 22, 4746–4755 (2002)Google Scholar
  3. 3.
    Laughlin, S.B., Sejnowski, T.J.: Communication in Neuronal Networks. Science 301, 1870–1874 (2003)CrossRefGoogle Scholar
  4. 4.
    Quiroga, R.Q., Reddy, L., Kreiman, G., Koch, C., Fried, I.: Invariant Visual Representation by Single Neurons in the Human Brain. Nature 435, 1102–1107 (2005)CrossRefGoogle Scholar
  5. 5.
    Stein, R.B., Gossen, E.R., Jones, K.E.: Neuronal Variability: Noise or Part of the Signal? Nature Reviews Neuroscience 6, 389–397 (2005)CrossRefGoogle Scholar
  6. 6.
    Wang, R.-B., Zhang, Z.-K.: Nonlinear Stochastic Models of Neurons Activities. Neurocomputing 51C, 401–411 (2003)CrossRefGoogle Scholar
  7. 7.
    Wang, R.-B., Jiao, X.-F.: A Stochastic Nonlinear Evolution Model and Neural Coding on Neuronal Population Possessing Variable Coupling Intensity in Spontaneous Behavior. Neurocomputing 69, 778–785 (2006)CrossRefGoogle Scholar
  8. 8.
    Jiao, X.-F., Wang, R.-B.: Nonlinear Dynamic Model and Neural Coding of Neuronal Network with the Variable Coupling Strength in the Presence of External Stimuli. Applied Physics Letters 87, 083901 (2005)CrossRefGoogle Scholar
  9. 9.
    Arbib, M.A.: The Handbook of Brain Theory and Neural Networks. The MIT Press, Cambridge (2002)Google Scholar
  10. 10.
    Wilson, R.A., Keil, F.C.: The MIT Encyclopedia of the Cognitive Sciences. The MIT Press, Cambridge (1999)Google Scholar
  11. 11.
    Freeman, W.J.: Neurodynamics. Springer, Berlin (2000)MATHGoogle Scholar
  12. 12.
    Nicholls, J.G., Martin, A.R., Wallace, B.G.: From Neuron to Brain, 3rd edn. Sinauer, Sunderland (2000)Google Scholar
  13. 13.
    Wang, R.-B., Hayashi, H., Zhang, Z.-K.: An Exploration of Dynamics on Moving Mechanism of the Growth Cone. Molecules 8, 127–138 (2003)CrossRefGoogle Scholar
  14. 14.
    Schwartz, W.J., et al.: Metabolic Mapping of Functional Activity in the Hypothalamo -Neurohypophysial System of the Rat. Science 205, 723–725 (1979)CrossRefGoogle Scholar
  15. 15.
    Mata, M., et al.: Activity-Dependent Energy Metab-Olism in Rat Posterior Pituitary Primarily Reflects Sodium Pump Activity. J. Neurochem. 34, 213–215 (1980)CrossRefGoogle Scholar
  16. 16.
    Haken, H.: Principles of Brain Functioning. Springer, Berlin (1996)MATHGoogle Scholar
  17. 17.
    Koch, C., Segev, I.: Methods in Neuronal Modeling. The MIT Press, Cambridge (1998)Google Scholar
  18. 18.
    Wang, R.-B., Zhang, Z.-K.: On Energy Principle of Couple Neuron Activities. Acta Biophysica Sinica 21, 436–442 (2005)Google Scholar
  19. 19.
    Wang, R.-B., Zhang, Z.-K.: Preparing for submission (2006)Google Scholar
  20. 20.
    Wang, R.-B.: Some Advances in Nonlinear Stochastic Evolution Models of Neuron Population. In: Proceedings 5th International Conference of Stochastic Structural Dynamics. ICSSD, pp. 453–461. CRC Press, Boca Raton (2003)Google Scholar
  21. 21.
    Zhu, W.-Q.: Nonlinear Stochastic Dynamics and Control. Science Press, Beijing (2003)Google Scholar
  22. 22.
    Purushothman, G., Bradley, D.C.: Neural Population Code for Fine Perceptual Decisions in Area MT. Nature Neuroscience 8, 99–106 (2005)CrossRefGoogle Scholar
  23. 23.
    Mayhew, J.E.W.: A Measured Look at Neuronal Oxygen Consumption. Science 299, 1023–1024 (2003)CrossRefGoogle Scholar
  24. 24.
    Crotty, P., Levy, W.B.: Energy-Efficient Interspike Interval Codes. Neurocomputing 65, 371–378 (2005)CrossRefGoogle Scholar
  25. 25.
    Taylor, J.G.: Paying Attention to Consciousness. Progress in Neurobiology 71, 305–335 (2003)CrossRefGoogle Scholar
  26. 26.
    Raichle, M.E., Gusnard, D.A.: Appraising the Brain’s Energy Budget. Proc. Natl. Acad. Sci. PNAS USA 99, 10237–10239 (2002)CrossRefGoogle Scholar
  27. 27.
    Hyder, F., Rothman, D.L., Shulman, R.G.: Total Neuroenergetics Support Localized Brain Activity: Implications for the Interpretation of fMRI. Proc. Natl. Acad. Sci. PNAS USA 99, 10771–10776 (2002)CrossRefGoogle Scholar
  28. 28.
    Smith, A.J., et al.: Cerebral Energetics and Spiking Frequency: The Neurophysiological Basis of fMRI. Proc. Natl. Acad. Sci. PNAS USA 99, 10765–10770 (2002)CrossRefGoogle Scholar
  29. 29.
    Jiao, X.-F., Wang, R.-B.: Synchronization in Neuronal Population with the Variable Coupling Strength in the Presence of External Stimulus. Applied Physics Letters (2006) (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rubin Wang
    • 1
  • Zhikang Zhang
    • 1
  1. 1.Institute for Brain Information Processing and Cognitive Neurodynamics, School of Information Science and EngineeringEast China University of Science and TechnologyShanghaiP.R. China

Personalised recommendations