Functional Connectivity in the Resting Brain: An Analysis Based on ICA

  • Xia Wu
  • Li Yao
  • Zhi-ying Long
  • Jie Lu
  • Kun-cheng Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4232)


The functional connectivity of the resting state, or default mode, of the human brain has been a research focus, because it is reportedly altered in many neurological and psychiatric disorders. Among the methods to assess the functional connectivity of the resting brain, independent component analysis (ICA) has been very useful. But how to choose the optimal number of separated components and the best-fit component of default mode network are still problems left. In this paper, we used three different numbers of independent components to separate the fMRI data of resting brain and three criterions to choose the best-fit component. Furthermore, we proposed a new approach to get the best-fit component. The result of the new approach is consistent with the default-mode network.


Functional Connectivity Independent Component Analysis fMRI Data Independent Component Analysis Posterior Cingulated Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Friston, K.J.: Statistical parametric mapping and other analyses of functional imaging data, pp. 363–396. Academic Press, San Diego (1996)Google Scholar
  2. 2.
    Biswal, B.B., Yekin, F.Z., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995)CrossRefGoogle Scholar
  3. 3.
    Goebel, R., Linden, D.E., Lanfermann, H., Zanella, F.E., Singer, W.: Functional imaging of mirror inverse reading reveals separate coactivated networks for oculomotion spatial transformations. Neuroreport 9, 713–719 (1998)CrossRefGoogle Scholar
  4. 4.
    Cordes, D., Haughton, V., Carew, J.D., Arfanakis, K., Maravilla, K.: Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn. Reson. Imaging 20, 305–317 (2002)CrossRefGoogle Scholar
  5. 5.
    Friston, K.J., Frith, C.D., Liddle, P.F., Frackowiak, R.S.: Functional connectivity: the principle-component analysis of large (PET) data sets. J. Cere Blood Flow Metab. 13, 5–14 (1993)CrossRefGoogle Scholar
  6. 6.
    Peltier, S.J., Polk, T.A., Noil, D.C.: Detecting low-frequency functional connectivity in fMRI using a self-organizing map (SOM) algorithm. Hum. Brain. Mapp. 20, 220–226 (2003)CrossRefGoogle Scholar
  7. 7.
    Biswal, B.B., Ulmer, J.L.: Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. J. Comp. Assist Tomogr. 23, 265–271 (1999)CrossRefGoogle Scholar
  8. 8.
    Kiviniemi, V., Kantola, J.H., Jauhiainen, J., Hyvarinen, A., Tervonen, O.: Independent component analysis of nondeterministic fMRI signal sources. Neuroimage 19, 253–260 (2003)CrossRefGoogle Scholar
  9. 9.
    van de Ven, V.G., Formisano, E., Prvulovic, D., Roeder, C.H., Linden, D.E.J.: Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum. Brain. Mapp. 22, 165–178 (2004)CrossRefGoogle Scholar
  10. 10.
    Greicius, M.D., Srivastava, G., Reiss, A.L., Menon, V.: Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc. Natl. Acad. Sci. USA 100, 253–258 (2004)CrossRefGoogle Scholar
  11. 11.
    McKeown, M.J., Humphries, C., Achermann, P., Borbely, A., Sejnowski, T.J.: A new method for detecting state changes in the EEG: Exploratory application to sleep data. J. Sleep. Res. 7(suppl. 1), 48–56 (1998a)CrossRefGoogle Scholar
  12. 12.
    McKeown, M.J., Jung, T.-P., Makeig, S., Brown, G.G., Kindermann, S.S., Lee, T.-W., Sejnowski, T.J.: Spatially independent activity patters in functional magnetic resonance imaging data during the stroop color-naming task. Proc. Natl. Acad. Sci. USA. 95, 803–810 (1998b)CrossRefGoogle Scholar
  13. 13.
    McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.-P., Kindermann, S.S., Bell, A.J., Sejnowski, T.J.: Analysis of fMRI data by decomposition into independent spatial components. Hum. Brain. Mapp. 6, 160–188 (1998c)CrossRefGoogle Scholar
  14. 14.
    McKeown, M.J., Sejnowski, T.J.: Independent component analysis of fMRI data: Examining the assumptions. Hum. Brain. Mapp. 6, 368–372 (1998)CrossRefGoogle Scholar
  15. 15.
    Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural. Comput. 7, 1129–1159 (1995)CrossRefGoogle Scholar
  16. 16.
    Hyvarinen, A.: Fast robust fixed-point algorithms for independent component analysis. IEEE. Trans. Neural. Netw. 10, 626–634 (1999)CrossRefGoogle Scholar
  17. 17.
    Calhoun, V.D., Adali, T., McGinty, V.B., Pekar, J.J., Watson, T.D., Pearlson, G.D.: fMRI activation in a visual-perception task: Network of areas detected using the general linear model and independent component analysis. NeuroImage 14, 1080–1088 (2001)CrossRefGoogle Scholar
  18. 18.
    Gu, H., Engelien, W., Feng, H.H., Silbersweig, D.A., Stern, E., Yang, Y.H.: Mapping Transient, randomly occurring neuropsychological events using independent component analysis. NeuroImage 14, 1432–1443 (2001)CrossRefGoogle Scholar
  19. 19.
    Long, Z.Y., Yao, L., Zhao, X.J.: Spatial Independent Component Analysis of Multitaskrelated Activation in fMRI Data. Lecture Notes Computer Science, vol. 2714, pp. 515–522. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Wu, X., Long, Z.Y., Yao, L., Chen, K.W.: A new post-processing method of applying independent component analysis to fMRI data. In: Medical Imaging 2006.2, Proceeding of SPIE 6144: 61446U-1- 5, USA (2006)Google Scholar
  21. 21.
    Wu, X., Yao, L., Long, Z.Y.: Improved Infomax Algorithm of Independent Component Analysis Applied to fMRI data. In: Medical Imaging 2004.1, Proceeding of SPIE 5370, U.S.A, pp. 1880–1889 (2004)Google Scholar
  22. 22.
    Raczkowski, D., Kalat, J.W., Nebes, R.: Reliability validity of some handedness questionnaire items. Neuropsychologia 6, 43–47 (1974)CrossRefGoogle Scholar
  23. 23.
    Friston, K.J., Ashburner, J., Frith, C.D., Poline, J.B., Heather, J.D., Frachowiak, R.S.D.: Spatial registration and normalization of images. Hum. Brain. Mapp. 3, 165–189 (1995)CrossRefGoogle Scholar
  24. 24.
    Talairach, J., Tournoux, P.: Co-planar stereotaxic atlas of the human brain. Thieme Medical, New York (1988)Google Scholar
  25. 25.
    Maldjian, J.A., Laurienti, P.J., Burdette, J.B., Kraft, R.A.: An automated method for neuroanatomic and cytoachitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19, 1233–1239 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xia Wu
    • 1
  • Li Yao
    • 1
    • 2
  • Zhi-ying Long
    • 3
  • Jie Lu
    • 4
  • Kun-cheng Li
    • 4
  1. 1.State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
  2. 2.College of Information and Computer TechnologyBeijing Normal UniversityBeijingChina
  3. 3.Center for Human DevelopmentUniversity of California at San DiegoUSA
  4. 4.Department of RadiologyXuan Wu Hospital of BeijingBeijingChina

Personalised recommendations