Modeling of LTP-Related Phenomena Using an Artificial Firing Cell

  • Beata Grzyb
  • Jacek Bialowas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4232)


We present a computational model of neuron, called firing cell (FC), that is a compromise between biological plausibility and computational efficiency aimed to simulate spiketrain processing in a living neuronal tissue. FC covers such phenomena as attenuation of receptors for external stimuli, delay and decay of postsynaptic potentials, modification of internal weights due to propagation of postsynaptic potentials through the dendrite, modification of properties of the analog memory for each input due to a pattern of long-time synaptic potentiation (LTP), output-spike generation when the sum of all inputs exceeds a threshold, and refraction. We showed that, depending on the phase of input signals, FC’s output frequency demonstrate various types of behavior from regular to chaotic.


Spike Train Biological Plausibility Firing Cell Analog Memory Synaptic Potentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bialowas, J., Grzyb, B., Poszumski, P.: Firing Cell: An Artificial neuron with a simulation of Long-Term-Potentiation-Related Memory. In: The Eleventh International Symposium of Artificial Life and Robotics, Beppu, pp. 731–734 (2006)Google Scholar
  2. 2.
    Atwood, H.L., MacKay, W.A.: Essentials of Neurophysiology. B.C. Decker Inc., Toronto (1989)Google Scholar
  3. 3.
    Schmidt, R.F. (ed.): Fundamentals of Neurophysiology, pp. 64–92. Springer, Heidelberg (1976)Google Scholar
  4. 4.
    Muller, D., Joly, M., Lynch, G.: Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242, 1694–1697 (1988)CrossRefGoogle Scholar
  5. 5.
    Bliss, T.V.P., Collingridge, G.L.: Asynaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993)CrossRefGoogle Scholar
  6. 6.
    Bekkers, J.M., Stevens, C.F.: Two different ways evolution makes neurons larger. In: Storm-Mathisen, J., Zimmer, J., Ottersen, O.P. (eds.) Progress in Brain Research, vol. 83, pp. 37–45. Elsevier, Amsterdam (1990)Google Scholar
  7. 7.
    Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural Networks 14, 1569–1572 (2003)CrossRefGoogle Scholar
  8. 8.
    Hines, M.: A program for simulation of nerve eqations with branching geometries. International Journal of Biomedical Comput. 24, 55–68 (1989)CrossRefGoogle Scholar
  9. 9.
    Sikora, M.A., Gottesman, J., Miller, R.F.: A computational model of the ribbon synapse. Journal of Neuroscience Methods 145, 47–61 (2005)CrossRefGoogle Scholar
  10. 10.
    Traub, R.D., Contreras, D., Cunningham, M.O., et al.: Single-Column Thalamocortical Network Model Exhibiting Gamma Oscillations, Sleep Spindles, and Epileptogenic Bursts. Journal of Neurophysiology 93, 2194–2232 (2005)CrossRefGoogle Scholar
  11. 11.
    Bower, J.M., Beeman, D.: The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System (2003),
  12. 12.
    Bliss, T.V.P., Lomo, T.J.: Long lasting potentiation of synaptic transmission in the dentate area of the anaestaetized rabbit following stimulation of the perforant path. J. Physiol. (London) 232, 331–356 (1973)Google Scholar
  13. 13.
    Rolls, E.T., Treves, A.: Neural Networks and Brain Function. Oxford University Press, Oxford (1998)Google Scholar
  14. 14.
    Amaral, D.G., Ishizuka, N.: Neurons, numbers and the hippocampal network. In: Storm-Mathisen, J., Zimmer, J., Ottersen, O.P. (eds.) Progress in Brain Research, vol. 83, pp. 1–12. Elsevier, Amsterdam (1990)Google Scholar
  15. 15.
    Mahovald, M., Douglas, R.: A silicon neuron. Nature 354, 515–518 (1991)CrossRefGoogle Scholar
  16. 16.
    Elias, J.G., Northmore, D.P.M.: Building Silicon Nervous Systems with Dendritic Tree Neuromorphs. In: Maass, W., Bishop, C.M. (eds.) Pulsed Neural Networks, pp. 135–156. The MIT Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Beata Grzyb
    • 1
  • Jacek Bialowas
    • 2
  1. 1.Faculty of Mathematics, Physics and Computer ScienceMaria Curie-Sklodowska UniversityLublinPoland
  2. 2.Dept. of Anatomy and Neurobiology Medical University of GdanskGdanskPoland

Personalised recommendations