Advertisement

Integrated Agent-Based Approach for Ontology-Driven Web Filtering

  • David Sánchez
  • David Isern
  • Antonio Moreno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4253)

Abstract

For knowledge-intensive industries it is of paramount importance to keep an up-to-date knowledge map of their domain in order to take the most appropriate strategic decisions. The Web offers a huge amount of valuable information, but its interaction is very hard and time consuming for humans because it requires to filter, analyse all related web pages and integrate it in a knowledge repository. This paper describes an integrated agent-based ontology-driven approach to retrieve web pages that contain data relevant to each of the main concepts of the domain of interest in a completely automatic, unsupervised and domain independent way.

Keywords

Search Engine Multiagent System Domain Ontology Ontology Learn Weight Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. Springer, Heidelberg (2001)MATHGoogle Scholar
  2. 2.
    Moreno, A., Riaño, D., Isern, D., Bocio, J., Sánchez, D., Jiménez, L.: Knowledge Exploitation from the Web. In: Karagiannis, D., Reimer, U. (eds.) PAKM 2004. LNCS, vol. 3336, pp. 175–185. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Sánchez, D., Isern, D., Moreno, A.: An Agent-Based Knowledge Acquisition Platform. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.N. (eds.) MATES 2005. LNCS, vol. 3550, pp. 118–129. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley and Sons, Ltd., West Sussex (2002)Google Scholar
  5. 5.
    Grefenstette, G.: SQLET: Short Query Linguistic Expansion Techniques: Palliating One-Word Queries by Providing Intermediate Structure to Text. In: Pazienza, M.T. (ed.) SCIE 1997. LNCS, vol. 1299, pp. 97–114. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Turney, P.D.: Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS, vol. 2167, p. 491. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Bocio, J., Isern, D., Moreno, A., Riaño, D.: Semantically Grounded Information Search on the WWW. In: Artificial Intelligence Research and Development, vol. 100, pp. 349–356. IOS Press, Amsterdam (2005)Google Scholar
  8. 8.
    Navigli, R., Velardi, P.: Learning Domain Ontologies from Document Warehouses and Dedicated Web Sites. Computational Linguistics 30, 151–179 (2004)CrossRefGoogle Scholar
  9. 9.
    Agirre, E., Ansa, O., Hovy, E., Martinez, D.: Enriching very large ontologies using the WWW. In: Workshop on Ontology Construction of the European Conference of AI (ECAI 2000) (2000)Google Scholar
  10. 10.
    Abramowicz, W.: Knowledge-Based Information Retrieval and Filtering from the Web. Springer, Heidelberg (2003)MATHGoogle Scholar
  11. 11.
    Sánchez, D., Moreno, A.: Development of new techniques to improve web search. In: 9th International Joint Conference on Artificial Intelligence, pp. 1632–1633 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David Sánchez
    • 1
  • David Isern
    • 1
  • Antonio Moreno
    • 1
  1. 1.Computer Science and Mathematics Department, Artificial Intelligence Research GroupUniversitat Rovira i Virgili (URV)BANZAI, TarragonaSpain

Personalised recommendations