Testing Online Navigation Recommendations in a Web Site

  • Juan D. Velásquez
  • Vasile Palade
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4253)


An online navigation recommendation system provides the prospective web site visitor with a set of pages that could be of his/her interest. Because the recommendations are given during the user session in the web site, it could be very damaging for the overall business of the company owning the web site, if the recommendations are erroneous. In this paper, we introduce an a priori method to estimate the success of an online navigation recommendation. The methodology was tested in a recommendation system that works with the data generated in a real web site, which proved the effectiveness of our approach.


Association Rule User Session Navigation Pattern Visitor Behavior Page Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brusilovsky, P.: Adaptive web-based system: Technologies and examples. In: Tutorial, IEEE Web Intelligence Int. Conference, Halifax, Canada (October 2003)Google Scholar
  2. 2.
    Coenen, F., Swinnen, G., Vanhoof, K., Wets, G.: A framework for self adaptive websites: tactical versus strategic changes. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 1–6. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization. ACM Trans. Inter. Tech. 3(1), 1–27 (2003)CrossRefGoogle Scholar
  4. 4.
    Kobsa, A., Koenemann, J., Pohl, W.: Personalised hypermedia presentation techniques for improving online customer relationships. Knowledge Engineering Review 16(2), 111–155 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web usage mining. Communications of the ACM 43(8), 142–151 (2000)CrossRefGoogle Scholar
  6. 6.
    Mobasher, B., Luo, T., Sung, Y., Zhu, J.: Integrating web usage and content mining for more effective personalization. In: Procs. of the Int. Conf. on E-Commerce and Web Technologies, September, Greenwich, UK, pp. 165–176 (2000)Google Scholar
  7. 7.
    Nielsen, J.: User interface directions for the web. Communications of ACM 42(1), 65–72 (1999)CrossRefGoogle Scholar
  8. 8.
    Pierrakos, D., Paliouras, G., Papatheodorou, C., Spyropoulos, C.D.: Web usage mining as a tool for personalization: A survey. User Modeling and User-Adapted 13, 311–372 (2003)CrossRefGoogle Scholar
  9. 9.
    Runkler, T.A., Bezdek, J.: Web mining with relational clustering. International Journal of Approximate Reasoning 32(2-3), 217–236 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Sae-Tang, S., Esichaikul, V.: Web personalization techniques for E-commerce. In: Liu, J., Yuen, P.C., Li, C.-H., Ng, J., Ishida, T. (eds.) AMT 2001. LNCS, vol. 2252, pp. 36–44. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communications of the ACM archive 18(11), 613–620 (1975)MATHCrossRefGoogle Scholar
  12. 12.
    Velásquez, J.D., Estévez, P.A., Yasuda, H., Aoki, T., Vera, E.S.: Intelligent web site: Understanding the visitor behavior. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS, vol. 3213, pp. 993–1003. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Velásquez, J.D., Weber, R., Yasuda, H., Aoki, T.: Acquisition and maintenance of knowledge for web site online navigation suggestions. IEICE Transactions on Information and Systems E88-D(5), 993–1003 (2005)CrossRefGoogle Scholar
  14. 14.
    Velásquez, J.D., Yasuda, H., Aoki, T., Weber, R.: Acquiring knowledge about users’s preferences in a web site. In: Procs. 1st IEEE Int. Conf. on Information Technology: Research and Education, Newark, New Jersey, USA, pp. 375–379 (August 2003)Google Scholar
  15. 15.
    Velásquez, J.D., Yasuda, H., Aoki, T., Weber, R.: A new similarity measure to understand visitor behavior in a web site. IEICE Transactions on Information and Systems, Special Issues in Information Processing Technology for web utilization E87-D(2), 389–396 (2004)Google Scholar
  16. 16.
    Yang, H., Parthasarathy, S., Reddy, S.: On the use of constrained association rules for web mining. In: Procs. Int. Conf. WebKDD workshop on Knowledge Discovery in the Web, Edmonton, Alberta, Canada, pp. 77–90 (2002)Google Scholar
  17. 17.
    Zheng, T., Goebel, R.: An ncm-based framework for navigation recommender systems. In: Procs. 19th Int. Conf. Artificial Intelligence workshop Multi-Agent Information Retrieval and Recommender Systems, Edinburgh, Scotland, pp. 80–86 (July 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Juan D. Velásquez
    • 1
  • Vasile Palade
    • 2
  1. 1.Department of Industrial EngineeringUniversity of ChileChile
  2. 2.Computing LaboratoryUniversity of OxfordUK

Personalised recommendations