New Classifier Based on Fuzzy Level Set Subgrouping

  • Paavo Kukkurainen
  • Pasi Luukka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4253)


We present new classification system which is based on fuzzy level sets subgrouping. This new classification system allow us fast classification method with quite accurate results.


Iris Data Mathematical Background Hard Decision Ideal Matrice Ideal Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Šešelja, B., Tepavčevič, A.: Fuzzy groups and collection of subgroups. Fuzzy Sets and Systems 83, 85–91 (1996)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Šešelja, B., Tepavčevič, A.: On a construction of codes by p-fuzzy sets. Ser. Mat. 20(2), 71–80 (1990)MATHMathSciNetGoogle Scholar
  3. 3.
    Pao, Y.H.: The Pattern Recognition and Neural Networks. Addison-Wesley Publishing Company, Inc., Reading (1989)Google Scholar
  4. 4.
    UCI Repository of Machine Learning Databases network document (referenced 4.11.2004), Available:
  5. 5.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis. John Wiley & Sons, Chichester (1973)MATHGoogle Scholar
  6. 6.
    Coomans, D., Broeckaert, M., Jonckheer, M., Massart, D.L.: Comparison of Multivariate Discriminant Techniques for Clinical Data - Application to the Thyroid Functional State. Meth. Inform. Med. 22, 93–101 (1983)Google Scholar
  7. 7.
    Simpson, P.K.: Fuzzy min-max neural networks - Part 1: Classification. IEEE Transactions on Neural Networks 3(5), 776–786 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paavo Kukkurainen
    • 1
  • Pasi Luukka
    • 1
  1. 1.Lappeenranta University of TechnologyLappeenrantaFinland

Personalised recommendations