Symbiotic Sensor Networks in Complex Underwater Terrains: A Simulation Framework

  • Vadim Gerasimov
  • Gerry Healy
  • Mikhail Prokopenko
  • Peter Wang
  • Astrid Zeman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4253)

Abstract

This paper presents a new multi-agent physics-based simulation framework (DISCOVERY), supporting experiments with self-organizing underwater sensor and actuator networks. DISCOVERY models mobile autonomous underwater vehicles, distributed sensor and actuator nodes, as well as multi-agent data-to-decision integration. The simulator is a real-time system using a discrete action model, fractal-based terrain modelling, with 3D visualization and an evaluation mode, allowing to compute various objective functions and metrics. The quantitative measures of multi-agent dynamics can be used as a feedback for evolving the agent behaviors. An evaluation of a simple simulated scenario with a heterogeneous team is also described.

Keywords

Supporter Agent Client Program Heterogeneous Team Actuator Network Actuator Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Boer, R., Kok, J.R.: The Incremental Development of a Synthetic Multi-Agent System: The UvA Trilearn 2001 Robotic Soccer Simulation Team. Master’s Thesis, University of Amsterdam, The Netherlands (2002)Google Scholar
  2. 2.
    Butler, M., Prokopenko, M., Howard, T.: Flexible Synchronisation within RoboCup Environment: A Comparative Analysis. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS, vol. 2019, pp. 119–128. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Coldet: an Open Source Collision Detection library, http://www.photoneffect.com/coldet/
  4. 4.
    Crutchfield, J.: The Calculi of Emergence: Computation, Dynamics, and Induction. Physica D 75, 11–54 (1994)MATHCrossRefGoogle Scholar
  5. 5.
    Dunbabin, M., Roberts, J., Usher, K., Winstanley, G., Corke, P.: A Hybrid AUV Design for Shallow Water Reef Navigation. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 2117–2122 (2005)Google Scholar
  6. 6.
    Foreman, M., Prokopenko, M., Wang, P.: Phase Transitions in Self-Organising Sensor Networks. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS, vol. 2801, pp. 781–791. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Fournier, A., Fussell, D., Carpenter, L.: Computer Rendering of Stochastic Models. Communications of the ACM 25(6), 371–384 (1982)CrossRefGoogle Scholar
  8. 8.
    Gerasimov, V., Guo, Y., James, G.C., Poulton, G.T.: Physically Realistic Self-assembly Simulation System. In: Abraham, A., Grosan, C., Ramos, V. (eds.) Stigmergic Optimization, Studies in Computational Intelligence, pp. 117–130. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Kitano, H., Tambe, M., Stone, P., Veloso, M., Coradeschi, S., Osawa, E., Matsubara, H., Noda, I., Asada, M.: The RoboCup Synthetic Agent Challenge. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence (1997)Google Scholar
  10. 10.
    Mahendra, P., Prokopenko, M., Wang, P., Price, D.C.: Towards Adaptive Clustering in Self-monitoring Multi-agent Networks. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS, vol. 3682, pp. 796–805. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Prokopenko, M., Wang, P., Howard, T.: Cyberoos 2001: ’Deep Behaviour Projection’ Agent Architecture. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS, vol. 2377, pp. 507–510. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Prokopenko, M., Wang, P.: Relating the Entropy of Joint Beliefs to Multi-agent Coordination. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS, vol. 2752, pp. 367–374. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Prokopenko, M., Wang, P., Price, D.C., Valencia, P., Foreman, M., Farmer, A.J.: Self-organising Hierarchies in Sensor and Communication Networks. Artificial Life, Special issue on Dynamic Hierarchies 11(4), 407–426 (2005)Google Scholar
  14. 14.
    Prokopenko, M., Wang, P., Foreman, M., Valencia, P., Price, D., Poulton, G.: On connectivity of reconfigurable impact networks in ageless aerospace vehicles. Journal of Robotics and Autonomous Systems 53, 36–58 (2005)CrossRefGoogle Scholar
  15. 15.
    Prokopenko, M., Mahendra, P., Wang, P.: On Convergence of Dynamic Cluster Formation in Multi-agent Networks. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS, vol. 3630, pp. 884–894. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Prokopenko, M., Wang, P., Price, D.: Complexity Metrics for Self-monitoring Impact Sensing Networks. In: Proceedings of 2005 NASA/DoD Conference on Evolvable Hardware (EH 2005), Washington D.C., USA (2005)Google Scholar
  17. 17.
    Prokopenko, M., Poulton, G.T., Price, D.C., Wang, P., Valencia, P., Hoschke, N., Farmer, A.J., Hedley, M., Lewis, C., Scott, D.A.: Self-organising impact sensing networks in robust aerospace vehicles. In: Fulcher, J. (ed.) Advances in Applied Artificial Intelligence, pp. 186–223. Idea Group Inc. (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vadim Gerasimov
    • 1
  • Gerry Healy
    • 1
  • Mikhail Prokopenko
    • 1
  • Peter Wang
    • 1
  • Astrid Zeman
    • 1
  1. 1.CSIRO Information and Communication Technology CentreNorth RydeAustralia

Personalised recommendations