On Clustering Performance Indices for Multispectral Images

  • C. Hernández
  • J. Gallego
  • M. T. Garcia-Sebastian
  • M. Graña
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4253)


Clustering of multispectral image pixels can be a exploratory tool to analyze the contents of the image in the absence of ground truth information. The validity of the clustering algorithms can be quantified computing several performance indices. Each performance index enhances some statistical property of the obtained data partitions. Performance indices are not equivalent, and they can even lead to quite different conclusions from the same data partitions. To show this, we have applied two well known clustering algorithms (K-means, Fuzzy c-means) and some supervised classification algorithms to a well known multispectral image. We compare the ground truth partition with the ones found by the clustering and supervised algorithms The values of the diverse performance indices over the same partitions vary and can lead to quite different conclusions.


Cluster Algorithm Ground Truth Performance Index Multispectral Image Dissimilarity Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baraldi, A., Bruzzone, L., Blonda, P., Carlin, L.: Quality assessment of classification and cluster maps without ground truth knowledge. IEEE Trans. Geoscience and Remote Sensing 44(1), 214–235 (2006)CrossRefGoogle Scholar
  2. 2.
    Baraldi, A., Bruzzone, L., Blonda, P.: Badly Posed Classification of Remotely Sensed Images;An Experimental Comparison of Existing Data Labeling Systems. IEEE Trans. Geoscience and Remote Sensing 43(4), 857–873 (2005)CrossRefGoogle Scholar
  3. 3.
    Bezdek, J.C., Ehrlich, R., Full, W.: FCM:Fuzzy C-Means Algorithm. Computers and Geosciences 10(2-3), 191–203 (1984)CrossRefGoogle Scholar
  4. 4.
    Da Silva Meyer, A.: Comparação de coeficientes de similaridade usados em análises de agrupamento com dados de marcadores moleculares dominantes. Dissertação (mestrado) Escola Superior de Agricultura ”Luz de Queiroz”. Piracicaba. Universade de São Paulo, p.106 (2002)Google Scholar
  5. 5.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience Publication, Wiley & Sons (2001)Google Scholar
  6. 6.
    Hernández, C., Graña, M., Gallego, J.: Survey of clustering performance indices Research Report, Dept. CCIA, UPV/EHU, Facultad Informática, San Sebastián (2005)Google Scholar
  7. 7.
    Halkidi, M., Vazirgiannis, M., Batistakis, Y.: Quality scheme assessment in the clustering process. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS, vol. 1910, pp. 265–276. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Keller, J., Krisnapuram, R., Pal, N.R., Bezdek, J.C.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Springer, New York (2005)Google Scholar
  9. 9.
    Landgrebe, D.A.: Signal Theory Methods in Multispectral Remote Sensing. Wiley & Sons, Chichester (2003)CrossRefGoogle Scholar
  10. 10.
    Youness, G.: Contributions à une mé thodologie de comparaison de partitions. Thèse CEDRIC, 2004. Thèse de doctorat, Université Pierre et Marie Cutie (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • C. Hernández
    • 1
  • J. Gallego
    • 1
  • M. T. Garcia-Sebastian
    • 1
  • M. Graña
    • 1
  1. 1.Computational Intelligence Group, Dept. CCIAUniversity of the Basque CountrySan SebastianSpain

Personalised recommendations