Evaluation of the Distributed Fuzzy Contention Control for IEEE 802.11 Wireless LANs

  • Young-Joong Kim
  • Jeong-On Lee
  • Myo-Taeg Lim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4253)


In our previous works, we focused on run-time optimization of the IEEE 802.11 protocol to improve its performance using a well-known fuzzy logic approach. Specifically, we derived the simple, and more accurate, approximation of the network contention level and the average size of contention window to maximize the theoretical throughput limit. In addition, we proposed the distributed fuzzy contention control (DFCC) mechanism using a fuzzy logic approach. In this paper, we propose the extension of the DFCC mechanism with a priority mechanism. To verify efficiency and robustness of our mechanism, the performance of the IEEE 802.11 standard protocol with the extension of DFCC mechanism are investigated through more realistic scenarios.


Medium Access Control Wireless Local Area Network Medium Access Control Protocol Contention Window Priority Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IEEE Standard for Wireless LAN - Medium Access Control and Physical Layer Specification, P802.11 (November 1997)Google Scholar
  2. 2.
    Stallings, W.: Local & Metropolitan Area Networks. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  3. 3.
    Crow, B.P., Widjaja, I., Kim, J.G., Sakai, P.T.: IEEE 802.11 Wireless Local Area Networks. IEEE Commun. Mag., 116–126 (September 1997)Google Scholar
  4. 4.
    Chhaya, H.S., Gupta, S.: Performance Modeling of Asynchronous Data Transfer Methods in The IEEE 802.11 MAC Protocol. ACM/Balzer Wireless Netw. 3, 217–234 (1997)CrossRefGoogle Scholar
  5. 5.
    Bianchi, G., Fratta, L., Oliveri, M.: Performance Evaluation And Enhancement of The CSMA/CA MAC Protocol for 802.11 Wireless LANs. In: Proc. PIMRC, Taiwan, pp. 392–396 (October 1996)Google Scholar
  6. 6.
    Weinmiller, J., Woesner, H., Ebert, P., Wolisz, A.: Analyzing and Tunning the Distributed Coordination Function in the IEEE 802.11 DFWMAC Draft Standard. In: Proc. Int. Workshop on Modelling, MASCOT (1996)Google Scholar
  7. 7.
    Cali, F., Conti, M., Gregori, E.: IEEE 802.11 Wireless LAN: Capacity Analysis and Protocol Enhancement. In: Proc. INFOCOM Conf., March/April, pp. 142–149 (1998)Google Scholar
  8. 8.
    Cali, F., Conti, M., Gregori, E.: Dynamic IEEE 802.11: Design, Modeling and Performance Evaluation. IEEE J. Selected Areas in Comm. 18(9), 1774–1786 (2000)CrossRefGoogle Scholar
  9. 9.
    Cali, F., Conti, M., Gregori, E.: Dynamic Tuning of The IEEE 802.11 Protocol to Achieve A Theoretical Throughput Limit. IEEE/ ACM Trans. Networking 8(6), 785–799 (2000)CrossRefGoogle Scholar
  10. 10.
    Bononi, L., Conti, M., Donatiello, L.: Design And Performance Evaluation of A Distributed Contention Control (DCC) Mechanism for IEEE 802.11 Wireless Local Area Networks. J. Parallel And Distributed Computing 60(4) (April 2000)Google Scholar
  11. 11.
    Bononi, L., Conti, M., Gregori, E.: Runtime Optimization of IEEE 802.11 Wireless LANs Performance. IEEE Trans. on Parallel and distributed Systems 15(1), 66–80 (2004)CrossRefGoogle Scholar
  12. 12.
    Kim, Y.-J., Lim, M.-T.: Run-Time Fuzzy Optimization of IEEE 802.11 Wireless LANs Performance. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 1079–1088. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Young-Joong Kim
    • 1
  • Jeong-On Lee
    • 1
  • Myo-Taeg Lim
    • 1
  1. 1.Department of Electrical EngineeringKorea UniversitySeoulKorea

Personalised recommendations