A Flexible Method for Envelope Estimation in Empirical Mode Decomposition

  • Yoshikazu Washizawa
  • Toshihisa Tanaka
  • Danilo P. Mandic
  • Andrzej Cichocki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4253)


A flexible and efficient method for finding the envelope within the empirical mode decomposition (EMD) is introduced. Unlike the existing (deterministic) spline based strategy, the proposed envelope is a result of an optimisation precess and sought as a minimum of a quadratic cost function. A closed form solution of this optimisation problem is obtained and it is shown that by choosing free parameters, we can fine-tune the frequency resolution or the number of intrinsic mode functions (IMFs) as well as the shape of the envelopes. Computer simulations on both the synthetic and real-world electro-encephalogram (EEG) data support the analysis.


Empirical Mode Decomposition Intrinsic Mode Function Brain Computer Interface Lower Envelope Quadratic Cost Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: Empirical Mode Decomposition Method and the Hilbert Spectrum for Non-stationary Time Series Analysis. In: Proc. Roy. Soc. London. A454, pp. 903–995 (1998)Google Scholar
  2. 2.
    Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House Publishers (1996)Google Scholar
  3. 3.
    Tukey, J.W.: Exploratory data analysis. Addison-Wesley, Reading (1977)zbMATHGoogle Scholar
  4. 4.
    The time-frequency toolbox,
  5. 5.
    Rilling, G., Flandrin, P., Gonçalvés, P.: MATLAB codes for EMD,
  6. 6.
    Lambert, M., Engroff, A., Dyer, M., Byer, B.: MATLAB codes for EMD,
  7. 7.
    Rutkowski, T.M., Vialatte, F.B., Cichocki, A., Mandic, D.P., Barros, A.K.: Auditory Feedback for Brain Computer Interface Management – An EEG Data Sonification Approach. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS, vol. 4253, pp. 1232–1239. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yoshikazu Washizawa
    • 1
  • Toshihisa Tanaka
    • 1
    • 2
  • Danilo P. Mandic
    • 3
  • Andrzej Cichocki
    • 1
  1. 1.Brain Science Institute, RIKENSaitamaJapan
  2. 2.Department of Electrical and Electronic EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
  3. 3.Department of Electrical and Electronic EngineeringImperial College LondonUnited Kingdom

Personalised recommendations