DNA-Based Evolutionary Algorithm for Cable Trench Problem

  • Don Jyh-Fu Jeng
  • Ikno Kim
  • Junzo Watada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4253)


An evolutionary DNA computing algorithm is proposed for solving a cable trench problem in this paper. The cable trench problem is a combination of the shortest path and minimum spanning tree problems, which makes it difficult to be solved by conventional computing method. DNA computing is applied to overcome the limitation, where fixed-length DNA strands are used in representing numerical values and the weights are varied by melting temperatures. Biochemical techniques in terms of DNA thermodynamic properties are used for effective local search of the optimal solution.


Denaturation Temperature Short Path Tree Minimum Span Tree Problem Temperature Gradient Method Effective Local Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman and Company, New York (1979)MATHGoogle Scholar
  3. 3.
    Jeng, D.J.-F., Watada, J., Kim, I.: Solving a Real Time Scheduling Problem Based on DNA Computing. In: Proceedings of International Conference on Intelligent Technologies and Applied Statistics, Taipei, Taiwan, pp. 317–322 (2005)Google Scholar
  4. 4.
    Jeng, D.J.-F., Wu, J.-Y.: Recent Development of DNA Computing. In: Proceedings of the International Conference on Recent trends in Information Systems, National Engineering College, Kovilpatti, Tamil Nadu, India, pp. 579–584 (2006)Google Scholar
  5. 5.
    Lee, J.Y., Shin, S.-Y., Park, T.H., Zhang, B.-T.: Solving Traveling Salesman Problems with DNA Molecules Encoding Numerical Values. BioSystems 78, 39–47 (2004)CrossRefGoogle Scholar
  6. 6.
    Lee, J.Y., Zhang, B.-T., Park, T.H.: Effectiveness of denaturation temperature gradient-polymerase chain reaction for biased DNA algorithms. In: Preliminary Proceedings of the Ninth International Meeting on DNA Based Computers, p. 208 (2003)Google Scholar
  7. 7.
    Liu, Q., Wang, L., Frutos, A.G., Condon, A.E., Corn, R.M., Smith, L.M.: DNA computing on surface. Nature 403, 175–179 (2000)CrossRefGoogle Scholar
  8. 8.
    Maley, C.C.: DNA computation: theory, practice, and prospects. Evolutionary Computation 6(3), 201–229 (1998)CrossRefGoogle Scholar
  9. 9.
    Marmur, J., Doty, P.: Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5, 109–118 (1962)CrossRefGoogle Scholar
  10. 10.
    Ouyang, Q., Kaplan, P.D., Liu, S., Libchaber, A.: DNA solution of the maximal clique problem. Science 278, 446–449 (1997)CrossRefGoogle Scholar
  11. 11.
    Owenson, G.G., Amos, M., Hodgson, D.A., Gibbsons, A.: DNA-based logic. Soft Computing 5(2), 102–105 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    Ralphs, T.K., Saltzman, M., Wiecek, M.: An Improved Algorithm for Biobjective Integer Programming. Annals of Operations Research (to appear)Google Scholar
  13. 13.
    Reif, J.H., LaBean, T.H., Pirrug, M., Rana, V.S., Guo, B., Kingsford, C., Wickham, G.S.: Experimental construction of a very large scale DNA database with associatice search capability. In: The 7th International Workshop on DNA-Based Computers, pp. 241–250 (2001)Google Scholar
  14. 14.
    SantaLucia Jr., J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences of the United States of America 95, 1460–1465 (1998)CrossRefGoogle Scholar
  15. 15.
    Vasko, F.J., Barbieri, R.S., Rieksts, B.Q., Reitmeyer, K.L., Stott Jr., K.L.: The cable trench problem: combining the shortest path and minimum spanning tree Problems. Computer & Operations Research 29, 441–458 (2002)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wetmur, J.G.: DNA probes: applications of the principles of nucleic acid hybridization. Critical Reviews in Biochemistry and Molecular Biology 26(3), 227–259 (1991)CrossRefGoogle Scholar
  17. 17.
    Wikipedia, GC-content (retrieved December 27, 2005), Web site:
  18. 18.
    Winfree, E., Lin, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–545 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Don Jyh-Fu Jeng
    • 1
  • Ikno Kim
    • 1
  • Junzo Watada
    • 1
  1. 1.Graduate School of Information, Production and SystemsWaseda UniversityWakamatsu, Kitakyushu, FukuokaJapan

Personalised recommendations