Using Representation Choice Methods for a Medical Diagnosis Problem

  • Kamila Aftarczuk
  • Adrianna Kozierkiewicz
  • Ngoc Thanh Nguyen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4253)


This paper presents two solutions of a medical diagnosis problem. We present two algorithms of this problem: one of them is based on data mining methods and the second relies on representative choice methods. The analysis of these solutions and the comparison of both algorithms are presented.


Association Rule Medical Diagnosis Mach Learn Decision Table Inductive Logic Programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aftarczuk, K., Kozierkiewicz, A.: The method of supporting medical diagnosis based on consensus theory. Report of Institute of Information Science & Engineering, Wroclaw University of Technology. Series PRE No. 1 (2006)Google Scholar
  2. 2.
    Bratko, I., Kononenko, I.: Learning diagnostic rules from incomplete and noisy data. In: Phelps, B. (ed.) AI Methods in Statistics, pp. 142–153. Gower Technical Press, London (1987)Google Scholar
  3. 3.
    Child, C., Stathis, K.: The Apriori Stochastic Dependency Detection (ASDD) Algorithm for Learning Stochastic Logic Rules. In: Dix, J., Leite, J., Torroni, P. (eds.) Proceedings of the 4th International Workshop on Computation, pp. 201–216 (2004)Google Scholar
  4. 4.
    Clark, P., Niblett, T.: The CN2 induction algorithm. Mach. Learn. 3(4), 261–283 (1989)Google Scholar
  5. 5.
    Coiera, E.: The Guide to Health Informatics, 2nd edn. Arnold, London (2003)Google Scholar
  6. 6.
    Daniłowicz, C., Nguyen, N.T.: Methods of choice of representation of ordered covering. Wroclaw University of Technology Press, Wroclaw (1992)Google Scholar
  7. 7.
    Duch, W., Adamczak, R., Grąbczewski, K., Jankowski, N., Żal, G.: Medical diagnosis support using neural and machine learning methods. In: Proceedings of Conference EANN 1998, Gibraltar, pp. 292–295 (1998)Google Scholar
  8. 8.
    Kononenko, I., Kukar, M.: Machine learning for medical diagnosis. In: Proceedings Workshop on Computer-Aided Data Analysis in Medicine, Bled, Slovenia, pp. 9–31 (1995)Google Scholar
  9. 9.
    Kusiak, A., Kern, J.A., Kernstine, K.H., Tseng, B.T.L.: Autonomous Decision-Making: A Data Mining Approach. IEEE Transactions on Information Technology in Biomedicine 4(4), 274–284 (2000)CrossRefGoogle Scholar
  10. 10.
    Lavrac, N.: Selected techniques for data mining in medicine. Artificial Intelligence in Medicine 16, 3–23 (1999)CrossRefGoogle Scholar
  11. 11.
    Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis Horwood, Chichester (1994)MATHGoogle Scholar
  12. 12.
    Lesmo, L., Saitta, L., Torasso, P.: Learning of fuzzy production rules for medical diagnosis. In: Gupta, M., Sanchez, E. (eds.) Approximate Reasoning in Decision Analysis, pp. 249–260. North-Holland, Amsterdam (1982)Google Scholar
  13. 13.
    Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning; neural and statistical classification, pp. 50–83. Ellis Horwood, Chichester (1994)MATHGoogle Scholar
  14. 14.
    Muggleton, S.: Inductive Acquisition of Expert Knowledge. Addison-Wesley, Reading (1990)Google Scholar
  15. 15.
    Nunez, M.: Decision tree induction using domain knowledge. In: Wielinga, B. (ed.) Current Trends in Knowledge Acquisition. IOS Press, Amsterdam (1990)Google Scholar
  16. 16.
    Quinlan, J.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)Google Scholar
  17. 17.
    Rumelhart, D., McClelland, J.: Parallel Distributed Processing. Foundations, vol. 1. MIT Press, Cambridge (1986)Google Scholar
  18. 18.
  19. 19.
  20. 20.
  21. 21.
  22. 22.
  23. 23.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kamila Aftarczuk
    • 1
  • Adrianna Kozierkiewicz
    • 1
  • Ngoc Thanh Nguyen
    • 1
  1. 1.Institute of Information Science and EngineeringWroclaw University of TechnologyPoland

Personalised recommendations