iJADE Content Management System (CMS) – An Intelligent Multi-agent Based Content Management System with Chaotic Copyright Protection Scheme

  • Raymond S. T. Lee
  • Eddie C. L. Chan
  • Raymond Y. W. Mak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4252)


In this paper, an Intelligent Content Management System with Chaotic Copyright Protection scheme called iJADE CMS is presented. iJADE CMS focuses on how web mining techniques can be effectively applied on Chinese content, with the integration of various AI techniques including intelligent agents, agent ontology and fuzzy logic based data mining scheme. Through the adoption of chaotic encryption scheme, iJADE CMS demonstrates how agentbased copyright protection can be successfully applied to digital media publishing industry. From the application perspective, iJADETM CMS provides the state-of-the-art content management function by the integration of iJADETM Technology with the Ontological Agent Technology. iJADETM CMS assists user to organize the content in the most semantic way. Moreover, the web mining information retrieval method such as Term Frequency Times Inverse Document Frequency (TFIDF) scheme is adopted to mine the linguistic meaning of the information content.


Term Frequency Certification Authority Copyright Protection Precision Rate Content Management System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    [Online] iJADE, http://www.ijadk.org
  2. 2.
    Wen, C.W., Liu, H., Wen, W.X., Zheng, J.: A Distributed Hierarchical Clustering System for Web Mining. In: Wang, X.S., Yu, G., Lu, H. (eds.) WAIM 2001. LNCS, vol. 2118, pp. 103–113. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Everett, J.O., Bobrow, D.G., Stolle, R., Crouch, R.S., de Paiva, V., Condoravdi, C., van den Berg, M., Polanyi, L.: Making ontologies work for resolving redundancies across documents. Communications of the ACM 45(2), 55–60 (2002)CrossRefGoogle Scholar
  4. 4.
    Ham, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  5. 5.
    [Online] BBC News Website, http://www.bbc.co.uk
  6. 6.
    [Online] CNN News Website, http://www.cnn.com
  7. 7.
    [Online] WordNet, http://www.wordnet.com
  8. 8.
    Brown, C.M., Danzig, B.B.: The harvest information discovery and access system. In: Proc. 2nd International World Wide Web Conference (1994)Google Scholar
  9. 9.
    Doorenbos, R.B., Etzioni, O., Weld, D.S.: A scalable comparison shopping agent for the world wide web, Technical Report TR 97-027, University of Minnesiota (1997)Google Scholar
  10. 10.
    Levy, A.Y., Kirk, T., Sagiv, Y.: The information manifold. In: AAAI Spring Symposium on Information Gathering From Heterogeneous Distributed Environments, p. 14 (1995)Google Scholar
  11. 11.
    Kwok, C., Weld, D.: Planning to gather information. In: Proc. 14th Nat. Conf. AI, p. 15 (1996)Google Scholar
  12. 12.
    Spertus, E.: Parasite: Mining structural information on the web. In: The Proc. 6th WWW Conf., p. 16 (1997)Google Scholar
  13. 13.
    Etzioni, O., Weld, D.S., Doorenbos, R.B.: A Scalable Comparison - Shopping Agent for the World Wide Web. Univ. Washington, Dept. Comput. Sci., Seattle, Tech. Rep. TR, P17, 96-01-03 (1996)Google Scholar
  14. 14.
    Lee, R.S.T.: Advanced Paradigms in Artifical Intelligence. International Series on Natural and Artificial Intelligence 5, 219 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Raymond S. T. Lee
    • 1
  • Eddie C. L. Chan
    • 1
  • Raymond Y. W. Mak
    • 1
  1. 1.The Department of ComputingThe Hong Kong Polytechnic UniversityKowloon, Hong Kong

Personalised recommendations