Advertisement

Path Planning and Obstacle Avoidance for Autonomous Mobile Robots: A Review

  • Voemir Kunchev
  • Lakhmi Jain
  • Vladimir Ivancevic
  • Anthony Finn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4252)

Abstract

Recent advances in the area of mobile robotics caused growing attention of the armed forces, where the necessity for unmanned vehicles being able to carry out the “dull and dirty” operations, thus avoid endangering the life of the military personnel. UAV offers a great advantage in supplying reconnaissance data to the military personnel on the ground, thus lessening the life risk of the troops. In this paper we analyze various techniques for path planning and obstacle avoidance and cooperation issues for multiple mobile robots. We also present a generic dynamics and control model for steering a UAV along a collision free path from a start to a goal position.

Keywords

Mobile Robot Path Planning Voronoi Diagram Obstacle Avoidance Goal Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chean, S.L.: Path planning & high level control of an unmanned aerial vehicle, University of Sydney (2002)Google Scholar
  2. 2.
    Fox, D., Burgard, W., Thrun, S.: The Dynamic Window Approach to Collision Avoidance. IEEE Robotics and Automation Magazine (March 1997)Google Scholar
  3. 3.
    Coste-Manière, È., Simmons, R.: Architecture, the Backbone of Robotic Systems. In: Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA (April 2000)Google Scholar
  4. 4.
    Russell, S., Norvig, P.: Artificial Intelligence: a Modern Approach. Prentice-Hall, Englewood Cliffs (1995)MATHGoogle Scholar
  5. 5.
    Borenstein, J., Koren, Y.: Real-time Obstacle Avoidance for Fast Mobile Robots. Real-time Obstacle Avoidance for Fast Mobile Robots 19(5) (September/October 1989)Google Scholar
  6. 6.
    Khatib, O.: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research 5(1) (1986)Google Scholar
  7. 7.
    Borenstein, J., Koren, Y.: The Vector Field Histogram- Fast obstacle avoidance for mobile robots. IEEE Journal of Robotics and Automation 7(3) (June 1991)Google Scholar
  8. 8.
    Ulrich, I., Borenstein, J.: VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots. In: IEEE International Conference on Robotics and Automation, Leuven, Belgium, p. 1572 (1998)Google Scholar
  9. 9.
    Brock, O., Khatib, O.: High-speed navigation using the global dynamic window approach. In: Proc. ICRA, pp. 341–346 (1999)Google Scholar
  10. 10.
    Minguez, J., Montano, L.: Nearness Diagram Navigation (ND): Collision Avoidance in Troublesome Scenarios. IEEE Transactions on Robotics and Automation (2004)Google Scholar
  11. 11.
    Arkin, R.: Behavior-Based Robotics. MIT Press, Cambridge (1999)Google Scholar
  12. 12.
    Simmons, R.: The Curvature Velocity Method for Local Obstacle Avoidance. In: IEEE Int. Conf. on Robotics and Automation, Minneapolis, USA (1996)Google Scholar
  13. 13.
    Quinlan, S., Khatib, O.: Elastic Bands: Connecting Path Planning and Control. In: IEEE Int. Conf. on Robotics and Automation, Atlanta, USA (1993)Google Scholar
  14. 14.
    Wilson, N.J.: Principles of Artificial Intelligence. Springer, Berlin (1982)Google Scholar
  15. 15.
    Nilsson, N.J.: A Mobile Automaton: An Application of Artificial Intelligence Techniques. In: Proc. 1st Int. Joint Conf. on Artificial Intelligence, Washington D.C, pp. 509–520 (1969)Google Scholar
  16. 16.
    Latombe, J.C.: Robot motion planning. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  17. 17.
    Eldershaw, C.: Transfer Report: Motion planning. Unpublished (1998)Google Scholar
  18. 18.
    Ivancevic, V., Ivancevic, T.: Natural Biodynamics. Mathematical Biology. World Scientific, Singapore (2006)Google Scholar
  19. 19.
    Reynolds, C.: Steering Behaviors for Autonomous Characters. In: Proceedings of Game Developers Conference (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Voemir Kunchev
    • 1
  • Lakhmi Jain
    • 1
  • Vladimir Ivancevic
    • 2
  • Anthony Finn
    • 2
  1. 1.School of Electrical and Information Engineering, Knowledge Based Intelligent Engineering Systems CentreUniversity of South AustraliaAustralia
  2. 2.Defence Science and Technology Organisation 

Personalised recommendations