Advertisement

Fuzzy-Neural Web Switch Supporting Differentiated Service

  • Leszek Borzemski
  • Krzysztof Zatwarnicki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4252)

Abstract

New designs of the Web switches must incorporate a client-and-server-aware adaptive dispatching algorithm to be able to optimize multiple static and dynamic services providing quality of service and service differentiation. This paper presents such an algorithm called FNRD (Fuzzy-Neural Request Distribution) which operates at layer-7 of the OSI protocol stack. This algorithm assigns each incoming request to the server with the least expected response time estimated using the fuzzy approach. FNRD has ability for learning and adaptation by means of a neural network feedback loop. We demonstrate through the simulations that our dispatching policy is more effective than state-of-the-art layer-7 reference dispatching policies CAP (Client-Aware Policy) and LARD (Locality Aware Request Distribution).

Keywords

Workload Model Individual Request Namic Request Request Distribution Expect Response Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arlit, M., Jin, T.: A Workload Characterization Study of the 1998 Word Cup Web Site. IEEE Network, 30–37 (May/June 2000)Google Scholar
  2. 2.
    Aron, M., Druschel, P., Zwaenepoel, W.: Efficient Support for P-HTTP in Cluster Based Web Servers. In: Proc. Usenix Ann. Techn. Conf., Monterey, CA (1999)Google Scholar
  3. 3.
    Barford, P., Crovella, M.E.: A Performance Evaluation of Hyper Text Transfer Protocols. In: Proc. ACM SIGMETRICS 1999, pp. 188–197 (1999)Google Scholar
  4. 4.
    Borzemski, L., Zatwarnicki, K.: A Fuzzy Adaptive Request Distribution Algorithm for Cluster-Based Web Systems. In: Proc. of 11th Conf. on Parallel, Distributed and Network-based Processing, pp. 119–126. IEEE CS Press, Los Alamitos (2003)Google Scholar
  5. 5.
    Borzemski, L., Zatwarnicki, K.: Using Adaptive Fuzzy-Neural Control to Minimize Response Time in Cluster-Based Web Systems. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS (LNAI), vol. 3528, pp. 63–68. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Bunt, R., Eager, D., Oster, G., Wiliamson, C.: Achieving Load Balance and Effective Caching in Clustered Web Servers. In: Proc. 4th Int’l Web Caching Workshop (1999)Google Scholar
  7. 7.
    Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The State of the Art in Locally Distributed Web-Server Systems. ACM Comp. Surv. 34(2), 263–311 (2002)CrossRefGoogle Scholar
  8. 8.
    Cardellini, V., Casalicchio, E., Colajanni, M., Mambelli, M.: Web Switch Support for Differenti-ated Services. ACM Perf. Eval. Rev. 29(2), 14–19 (2001)CrossRefGoogle Scholar
  9. 9.
    Casalicchio, E., Colajanni, M.: A Client-Aware Dispatching Algorithm for Web Clusters Provid-ing Multiple Services. In: Proc. WWW, vol. 10, pp. 535–544 (2001)Google Scholar
  10. 10.
    Cheng, R.G., Chang, C.J.: A QoS-Provisioning Neural Fuzzy Connection Admission Controller for Multimedia Networks. IEEE Trans. on Networking 7(1), 111–121 (1999)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kwok, Y.-K., Cheung, L.-S.: A New Fuzzy-Decision Based Load Balancing System for Distrib-uted Object Computing. J. Parallel Distribut. Comput. 64, 238–253 (2004)MATHCrossRefGoogle Scholar
  12. 12.
    Mamdani, E.H.: Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis. IEEE Trans. on Computers C-26(12), 1182–1191 (1977)CrossRefGoogle Scholar
  13. 13.
    Mesquite Software Inc. CSIM19 User’s Guide. Austin, TX. http://www.mesquite.com
  14. 14.
    Pai, V.S., Aront, M., Banga, G., Svendsen, M., Druschel, P.: W. Zwaenpoel, Nahum E.: Locality-Aware Request Distribution in Cluster-Based Network Servers. In: Proc. of 8th ACM Conf. on Arch. Support for Progr. Languages (1998)Google Scholar
  15. 15.
    Yager, R.R., Filev, D.: Essentials of Fuzzy Modeling and Control. John Wiley and Sons, New York (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Leszek Borzemski
    • 1
  • Krzysztof Zatwarnicki
    • 2
  1. 1.Institute of Information Science and EngineeringWroclaw University of TechnologyWroclawPoland
  2. 2.Department of Electrical Engineering and Automatic ControlTechnical University of OpoleOpolePoland

Personalised recommendations