Advertisement

Relevance Ranking of Intensive Care Nursing Narratives

  • Hanna Suominen
  • Tapio Pahikkala
  • Marketta Hiissa
  • Tuija Lehtikunnas
  • Barbro Back
  • Helena Karsten
  • Sanna Salanterä
  • Tapio Salakoski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4251)

Abstract

Current computer-based patient records provide many capabilities to assist nurses’ work in intensive care units, but the possibilities to utilize existing free-text documentation are limited without the appropriate tools. To ease this limitation, we present an adaptation of the Regularized Least-Squares (RLS) algorithm for ranking pieces of nursing notes with respect to their relevance to breathing, blood circulation, and pain. We assessed the ranking results by using Kendall’s τ b as a measure of association between the output of the RLS algorithm and the desired ranking. The values of τ b were 0.62, 0.69, and 0.44 for breathing, blood circulation, and pain, respectively. These values indicate that a machine learning approach can successfully be used to rank nursing notes, and encourage further research on the use of ranking techniques when developing intelligent tools for the utilization of nursing narratives.

Keywords

Blood Circulation Reproduce Kernel Hilbert Space Machine Learning Approach Intelligent Tool Relevance Ranking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chapman, W.W., Dowling, J.N., Wagner, M.M.: Fever detection from free-text clinical records for biosurveillance. J. Biomed. Inform. 37, 120–127 (2004)CrossRefGoogle Scholar
  2. 2.
    Pakhomov, S.V., Buntrock, J.D., Chute, C.G.: Using compound codes for automatic classification of clinical diagnoses. Medinfo. 11, 411–415 (2004)Google Scholar
  3. 3.
    Wellman, H.M., Lehto, M.R., Sorock, G.S., Smith, G.S.: Computerized coding of injury narrative data from the National Health Interview Survey. Accid. Anal. Prev. 36, 165–171 (2004)CrossRefGoogle Scholar
  4. 4.
    Chapman, W.W., Christensen, L.M., Wagner, M.M., Haug, P.J., Ivanov, O., Dowling, J.N., Olszewski, R.T.: Classifying free-text triage chief complaints into syndromic categories with natural language processing. Artif. Intell. Med. 33, 31–40 (2005)CrossRefGoogle Scholar
  5. 5.
    Pakhomov, S.V., Buntrock, J., Chute, C.G.: Prospective recruitment of patients with congestive heart failure using an ad-hoc binary classifier. J. Biomed. Inform. 38, 145–153 (2005)CrossRefGoogle Scholar
  6. 6.
    Rifkin, R.M.: Everything old is new again: A fresh look at historical approaches in machine learning. PhD Thesis, Massachusetts Institute of Technology (2002)Google Scholar
  7. 7.
    Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 133–142. ACM Press, New York (2002)CrossRefGoogle Scholar
  8. 8.
    Tsivtsivadze, E., Pahikkala, T., Pyysalo, S., Boberg, J., Mylläri, A., Salakoski, T.: Regularized Least Squares for parse ranking. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646, pp. 464–474. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Ward, N.S., Snyder, J.E., Ross, S., Haze, D., Levy, M.M.: Comparison of a commercially available clinical information system with other methods of measuring critical care outcomes data. J. Crit. Care 19, 10–15 (2004)CrossRefGoogle Scholar
  10. 10.
    Payen, J.-F., Bru, O., Bosson, J.-L., Lagrasta, A., Novel, E., Deschaux, I., Lavagne, P., Jacquot, C.: Assessing pain in critically ill sedated patients by using a behavioral pain scale. Crit. Care Med. 29, 2258–2263 (2001)CrossRefGoogle Scholar
  11. 11.
    Gélinas, C., Fortier, M., Viens, C., Fillion, L., Puntillo, K.: Pain assessment and management in critically ill intubated patients: a retrospective study. Am. J. Crit. Care 13, 126–135 (2004)Google Scholar
  12. 12.
    Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960)CrossRefGoogle Scholar
  13. 13.
    Hiissa, M., Pahikkala, T., Suominen, H., Lehtikunnas, T., Back, B., Karsten, H., Salanterä, S., Salakoski, T.: Towards automated classification of intensive care nursing narratives. In: The 20th International Congress of the European Federation for Medical Informatics (MIE 2006), Maastricht, the Netherlands, August 27–30 (to be presented, 2006)Google Scholar
  14. 14.
    Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Amer. Math. Soc. Notice 50, 537–544 (2003)MATHMathSciNetGoogle Scholar
  15. 15.
    Snowball, the Finnish stemming algorithm. Martin Porter; c, and (for the Java developments) Richard Boulton; c2002 [updated 2005 May 23; cited 2006 Jan 10]. (2001), http://snowball.tartarus.org/algorithms/finnish/stemmer.html
  16. 16.
    Kendall, M.G.: Rank correlation methods, 4th edn., Griffin, London (1970)Google Scholar
  17. 17.
    Hripcsak, G., Wilcox, A.: Reference standards, judges, and comparison subjects: roles for experts in evaluating system performance. J. Am. Med. Inform. Assoc. 9, 1–15 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hanna Suominen
    • 1
    • 2
  • Tapio Pahikkala
    • 1
    • 2
  • Marketta Hiissa
    • 1
    • 4
  • Tuija Lehtikunnas
    • 3
    • 5
  • Barbro Back
    • 1
    • 4
  • Helena Karsten
    • 1
    • 2
  • Sanna Salanterä
    • 3
  • Tapio Salakoski
    • 1
    • 2
  1. 1.Turku Centre for Computer ScienceTurkuFinland
  2. 2.Department of Information TechnologyUniversity of TurkuTurkuFinland
  3. 3.Department of Nursing ScienceUniversity of TurkuFinland
  4. 4.Department of Information TechnologiesÅbo Akademi UniversityTurkuFinland
  5. 5.Turku University HospitalTurkuFinland

Personalised recommendations