Project Situations Aggregation to Identify Cooperative Problem Solving Strategies

  • Chaker Djaiz
  • Nada Matta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4251)


The knowledge engineering offers a rational framework allowing a representation of knowledge obtained through the experiences. This technique found a great application in knowledge management and especially to capital ize knowledge. In fact, the rational representation of knowledge allows their exploitation and their re-use. It is a necessary condition to allow a re-use and a knowledge appropriation. The knowledge management must take into account this dimension, since its first concern is to make knowledge persistent, ready to be re-used. In this paper, we study the traces classifications of the design pro ject achievements in order to have a knowledge aggregation and to thus provide a representation of handled knowledge: directives and competences organiza tion as well as negotiation strategies and cooperative problems solving.


Knowledge Management Aggregation Strategy Negotiation Strategy Criterion Type Cooperative Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J.: The Architecture of Cognition. Harvard University Press (1983)Google Scholar
  2. 2.
    Baker, M.J.: Recherche sur l’élaboration de connaissances dans le dialogue, HDR, Univ Nancy2 (2004)Google Scholar
  3. 3.
    Bekhti, S., Matta, N.: Project memory: An approach of modelling and reusing the context and the design rationale. In: Proceedings of IJCAI 2003 (International joint of conferences of Artificial Intelligence) Workshop on knowledge management and organisational memory, Acapulco (2003)Google Scholar
  4. 4.
    Benzecri, J.P.: Data analyzes. T1: La taxinomie. Dunod (1973)Google Scholar
  5. 5.
    Chavent, M., Guinot, C., Lechevallier, Y.: Divisives Methode of classification. Inria., Rocquencourt (1999)Google Scholar
  6. 6.
    Clark, H.H., Schaefer, E.F.: Contributing to Discourse. Cognitive Science 13, 259–294 (1989)CrossRefGoogle Scholar
  7. 7.
    Conein, B.: Ethologie and sociologie: la contribution de l’éthologie à la théorie de l’interaction sociale. French Revue of Sociologie XXXIII(1), 87–104 (1992)CrossRefGoogle Scholar
  8. 8.
    Darses, F., et Falzon, P.: Collective design: une approche de l’ergonomie cognitive, Coopération et conception, sous la direction de G. De Terssac et E. Friedberg aux éditions Octares (1996)Google Scholar
  9. 9.
    Diday, E.: Une représentation visuelle des classes empiétantes. Rapport INRIA, n- 291. Recquoncourt 78150, France (1884)Google Scholar
  10. 10.
    Ducrot, O.: Les échelles argumentatives, Paris, Minuit (1982)Google Scholar
  11. 11.
    Herrmann, T., Jahnke, I.: The Role Concept as a Basis for Designing Community Systems (2004)Google Scholar
  12. 12.
    Jain, A.K., Dubes, R.: Algorithms for clustering data. Prentice-Hall, Englewood Cliffs (1988)MATHGoogle Scholar
  13. 13.
    Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967)CrossRefGoogle Scholar
  14. 14.
    Karsenty, L.: An Empirical Evaluation of Design Rationale Documents. In: Bilger, R., Guest, S., Tauber, M.J. (eds.) Proceedings of CHI (1996)Google Scholar
  15. 15.
    Kerbrat-Orechioni, C.: Le discours en interactions. A. Colin, Paris (2005)Google Scholar
  16. 16.
    Matta, N., Ribiere, M., Corby, O., Lewkowicz, M., Zacklad, M.: Project Memory in Design. In: Roy, R. (ed.) Industrial Knowledge Management - A Micro Level Approach, Springer, Heidelberg (2000)Google Scholar
  17. 17.
    Matta, N., Eynard, B., Roucoules, L., Lemercier, M.: Continuous capitalization of design knowledge. In: Proceedings of ECAI 2002 (European conferences of Artificial Intelligence) Workshop on knowledge management and organisational memory, Lyon (2002)Google Scholar
  18. 18.
    Moeschler, J.: Modélisation du Dialogue. Hermès, Paris (1989)Google Scholar
  19. 19.
    Nakache, J.P., Confias, J.: Méthodes de Classification., CISIA. CERESTA edition Mars, pp. 5–54 (2000)Google Scholar
  20. 20.
    Ohlsson, S.: Learning to do and learning to understand: A lesson and a challenge for cognitive modeling. In: Reiman dans, P., Spade et, H. (dirs.), Learning in Humans and Machines: Towards an interdisciplinary learning science, pp. 37–62. Elsevier Science, Oxford (1996)Google Scholar
  21. 21.
    Plantin, C.: L’argumentation. Seuil, Paris (1996)Google Scholar
  22. 22.
    Pléty, R., cooperative learning. Presses Universitaires de Lyon, Lyon (1996) Google Scholar
  23. 23.
    Richard, J.F.: Les activités mentales, Comprendre, raisonner, trouver des solutions, Armand Colin, Paris (1990)Google Scholar
  24. 24.
    Roulet, E.: On the Structure of Conversation as Negotiation. In: Parret, H., Verschueren, J. (eds.) (On) Searle on Conversation, pp. 91–100. John Benjamins, Amsterdam (1992)Google Scholar
  25. 25.
    Toulmin, S.: The uses of argument. Cambridge University Press, Cambridge (1958)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chaker Djaiz
    • 1
  • Nada Matta
    • 1
  1. 1.Charles Delaunay Institute, Tech-CicoUniversity of technology of TroyesTroyesFrance

Personalised recommendations