Evaluation of the Perceptual Performance of Fuzzy Image Quality Measures

  • Ewout Vansteenkiste
  • Dietrich Van der Weken
  • Wilfried Philips
  • Etienne Kerre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4251)


In this paper we present a comparison of fuzzy instrumental image quality measures versus experimental psycho-visual data. A psycho-visual experiment we recently performed at our departments was used to collect data on human visual perception. The Multi-Dimensional Scaling (MDS) framework was applied in order to test which of our fuzzy image similarity measures correlates best to this human visual perception. Based on Spearman’s Rank Order Correlation coefficient we will show that the M \(^{p}_{\rm 6}\) and M \(^{h}_{i3}\) measures outperform their peers as well as the commonly used MSE and PSNR measures, in the case where image distortions are less trivial to distinguish with the bare eye.


Similarity Measure Visual Quality Image Part Perceptual Performance Euclidean Distance Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, S.M., Yeh, M.S., Hsiao, P.Y.: A comparison of similarity measures of fuzzy values. Fuzzy Sets and Systems 72, 79–89 (1995)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising with block-matching and 3D filtering. In: Image Processing: Algorithms and Systems V, 6064A-30, IST/SPIE Electronic Imaging, 2006, San Jose, CA (to appear, 2006)Google Scholar
  3. 3.
    Escalante-Ramirez, B., Martens, J.B., de Ridder, H.: Multidimensional characterization of the perceptual quality of noise-reduced computed tomography images. J. Visual Comm. Image Representation 6, 317–334 (1995)CrossRefGoogle Scholar
  4. 4.
    Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise Shape-Adaptive DCT as an overcomplete denoising tool. In: Proc. Int. TICSP Workshop Spectral Meth. Multirate Signal Process, SMMSP 2005 (2005)Google Scholar
  5. 5.
    Guerrero-Colon, J.A., Portilla, J.: Two-Level Adaptive Denoising Using Gaussian Scale Mixtures in Overcomplete Oriented Pyramids. In: Proceedings of IEEE ICIP conference, Genova, Italy, September 2005, pp. 105–108 (2005)Google Scholar
  6. 6.
    Kayagaddem, V., Martens, J.B.: Perceptual characterization of images degraded by blur and noise: experiments. Journal of Opt. Soc. Amer. A 13, 1178–1188 (1996)CrossRefGoogle Scholar
  7. 7.
    Pizurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A Joint Inter- and Intrascale Statistical Model for Bayesian Wavelet Based Image Denoising. IEEE Transactions on Image Processing 11(5), 545–557 (2002)CrossRefGoogle Scholar
  8. 8.
    Sendur, L., Selesnick, I.W.: Bivariate Shrinkage With Local Variance Estimation. IEEE Signal Processing Letters 9(12), 438–441 (2002)CrossRefGoogle Scholar
  9. 9.
    Sendur, L., Selesnick, I.W.: Bivariate Shrinkage Functions for Wavelet-Based Denoising Exploiting Interscal Dependency. IEEE Trans. on Signal Processing 50(11), 2744–2756 (2002)CrossRefGoogle Scholar
  10. 10.
    Van der Weken, D., Nachtegael, M., Kerre, E.E.: The applicability of similarity measures in image processing. Intellectual Systems 6(1-4), 231–248 (2001) (in Russian)Google Scholar
  11. 11.
    Van der Weken, D., Nachtegael, M., Kerre, E.E.: An overview of similarity measures for images. In: Proceedings of ICASSP 2002 (IEEE International Conference on Acoustics, Speech and Signal Processing), Orlando, United States, pp. 3317–3320 (2002)Google Scholar
  12. 12.
    Van der Weken, D., Nachtegael, M., Kerre, E.E.: Using Similarity Measures for Histogram Comparison. In: De Baets, B., Kaynak, O., Bilgiç, T. (eds.) IFSA 2003. LNCS, vol. 2715, pp. 396–403. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Van der Weken, D., Nachtegael, M., Kerre, E.E.: Using Similarity Measures and Homogeneity for the Comparison of Images. Image and Vision Computing 22(9), 695–702 (2004)CrossRefGoogle Scholar
  14. 14.
    Van der Weken, D.: The use and the construction of similarity measures in image processing., PhD thesis, Ghent University (in Dutch) (2004)Google Scholar
  15. 15.
    Van De Ville, D., Nachtegael, M., Van der Weken, D., Kerre, E.E., Philips, W., Lemahieu, I.: Noise Reduction by Fuzzy Image Filtering. IEEE Transactions on Fuzzy Systems 11(4), 429–436 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ewout Vansteenkiste
    • 1
  • Dietrich Van der Weken
    • 2
  • Wilfried Philips
    • 1
  • Etienne Kerre
    • 2
  1. 1.Image Processing & Interpretation GroupGhent UniversityGhentBelgium
  2. 2.Fuzziness & Uncertainty ModellingGhent UniversityGhentBelgium

Personalised recommendations