Personalization Method for Tourist Point of Interest (POI) Recommendation

  • Eui-young Kang
  • Hanil Kim
  • Jungwon Cho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4251)


Today, travelers are provided large amount information which includes Web sites and tourist magazines about introduction of tourist spot. However, it is not easy for users to process the information in a short time. Therefore travelers prefer to receive pertinent information easier and have that information presented in a clear and concise manner. This paper proposes a personalization method for tourist Point of Interest (POI) Recommendation.


Collaborative Filter Similar User Preference Attribute Tourist Information Tourist Spot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holm, L.A.: IFLA Model for Bibliographic Records: ELAG OO Edition 2. In: EALG 1999-Managing Multimedia Collection-Bled, Slovenia (1999)Google Scholar
  2. 2.
    Seo, Y.S., et al.: e-Learning Standardization Roadmap. In: KERIS (2003)Google Scholar
  3. 3.
    Zeng, M.L.: Metadata Element for object Description and Representation: A case Report from a Digitized Historical Fashion Project. Journal of the American society for Information Science 50(12), 1193–1208 (1999)CrossRefGoogle Scholar
  4. 4.
    Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Combining Content-Based and collaborative Filters in an Online Newspaper. In: Proceedings of the ACM SIGIR Workshop on Recommender Systems (1999)Google Scholar
  5. 5.
    Pazzani, M.: A Framework for Collaborative, Content-based and Demographic Filtering. Artificial Intelligence Review, 393–408 (1999)Google Scholar
  6. 6.
    Kim, H.I., Kim, J.T.: Data Blurring Method for Solving Sparseness Problem in Collaborative Filtering. The Korea Information Science Society 32(6), 542–553 (2005)Google Scholar
  7. 7.
    Ko, S.J., Lee, J.H.: Feature Selection using Association Word mining for Classification. In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113, pp. 211–220. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Ko, S.J.: Extracting Typical Group Preferences through User-Item Optimization and User Profiles in Collaborative Filtering System. The Korea Information Science Society 32(7), 581–591 (2005)Google Scholar
  9. 9.
    Nakayama, L., Almeida, V., Vicari, R.: A Personalized Information Retrieval Service for an Educational Environment. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 842–844. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Bowen, D.: Research on tourist satisfaction and dissatisfaction. Proceedings of the Journal of Vacation Marketing 7(1), 31–40 (2001)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Breese, J., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: Proceedings of the Fourteenth Annual conference on Uncertainty in Artificial Intelligence, pp. 43–52 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eui-young Kang
    • 1
  • Hanil Kim
    • 1
  • Jungwon Cho
    • 1
  1. 1.Department of Computer EducationCheju National UniversityJeju-doKorea

Personalised recommendations